Héctor Massone
Facultad de Ciencias Exactas y Naturales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Héctor Massone.
Environmental Management | 2011
M. Lourdes Lima; Karina Zelaya; Héctor Massone
Vulnerability assessment is considered an effective tool in establishing monitoring networks required for controlling potential pollution. The aim of this work is to propose a new integrated methodology to assess actual and forecasted groundwater vulnerability by including land-use change impact on groundwater quality. Land-use changes were simulated by applying a spatial dynamics model in a scenario of agricultural expansion. Groundwater vulnerability methodology DRASTIC-P, was modifyed by adding a land-use parameter in order to assess groundwater vulnerability within a future scenario. This new groundwater vulnerability methodology shows the areas where agricultural activities increase the potential level of groundwater vulnerability to pollution. The Dulce Creek Basin was the study case proposed for the application of this methodology. The study revealed that the area with Very High vulnerability would increase 20% by the year 2020 in the Dulce Creek Basin. This result can be explained by analyzing the land-use map simulated by the Dyna-CLUE model for the year 2020, which shows that the areas with increments in crop and pasture coincide with the area defined by the Very High aquifer vulnerability category in the year 2020. Through scenario analysis, land-use change models can help to identify medium or long term critical locations in the face of environmental change.
Science of The Total Environment | 2014
Sebastián I. Grondona; Mariana Gonzalez; Daniel E. Martínez; Héctor Massone; Karina S. B. Miglioranza
Endosulfan has been recently added to Persistent Organic Pollutants (POPs) list and due to its extensive and massive use and environmental persistence constitutes a potential hazard to groundwater resources. Undisturbed soil columns were used to evaluate endosulfan leaching in two series of Typic Argiudolls considering natural and agricultural land use. Columns were spiked with 10μgL(-1) of technical endosulfan and eluted under saturated flow with five pore volumes of distilled water. Alfa and beta isomer residues were detected in the upper soil level, with decreasing values through the profile, being influenced by soil texture and land use. The endosulfan sulfate metabolite was mainly found in the upper level linked to high dehydrogenase activity. Results from leachates (total endosulfan 27-87ngL(-1)) showed higher α-isomer mobility, and suggest alkaline hydrolysis of both endosulfan isomers. The agricultural use modified the physico-chemical properties and structure of soils leading to vertical migration of endosulfan isomers under saturated conditions. Intact column test provided information close to field data showing its utility for the assessment of groundwater pollution by endosulfan.
Environmental Management | 2011
Asunción Romanelli; Héctor Massone
This article gives an account of the implementation of a stakeholder analysis framework at La Brava Wetland Basin, Argentina, in a common-pool resource (CPR) management context. Firstly, the context in which the stakeholder framework was implemented is described. Secondly, a four-step methodology is applied: (1) stakeholder identification, (2) stakeholder differentiation-categorization, (3) investigation of stakeholders’ relationships, and (4) analysis of social-biophysical interdependencies. This methodology classifies stakeholders according to their level of influence on the system and their potential in the conservation of natural resources. The main influential stakeholders are La Brava Village residents and tourism-related entrepreneurs who are empowered to make the more important decisions within the planning process of the ecosystem. While these key players are seen as facilitators of change, there are other groups (residents of the inner basin and fishermen) which are seen mainly as key blockers. The applied methodology for the Stakeholder Analysis and the evaluation of social-biophysical interdependencies carried out in this article can be seen as an encouraging example for other experts in natural sciences to learn and use these methods developed in social sciences. Major difficulties and some recommendations of applying this method in the practice by non-experts are discussed.
Science of The Total Environment | 2015
M. Lourdes Lima; Asunción Romanelli; Héctor Massone
This paper proposes a modeling approach for assessing changes in groundwater pollution hazard under two different socio-economic and environmental scenarios: The first one considers an exponential growth of agriculture land-use (Relegated Sustainability), while the other deals with regional economic growth, taking into account, the restrictions put on natural resources use (Sustainability Reforms). The recent (2011) and forecasted (2030) groundwater pollution hazard is evaluated based on hydrogeological parameters and, the impact of land-use changes in the groundwater system, coupling together a land-use change model (Dyna-CLUE) with a groundwater flow model (MODFLOW), as inputs to a decision system support (EMDS). The Dulce Stream Watershed (Pampa Plain, Argentina) was chosen to test the usefulness and utility of this proposed method. It includes a high level of agricultural activities, significant local extraction of groundwater resources for drinking water and irrigation and extensive available data regarding aquifer features. The Relegated Sustainability Scenario showed a negative change in the aquifer system, increasing (+20%; high-very high classes) the contribution to groundwater pollution hazard throughout the watershed. On the other hand, the Sustainability Reforms Scenario displayed more balanced land-use changes with a trend towards sustainability, therefore proposing a more acceptable change in the aquifer system for 2030 with a possible 2% increase (high-very high classes) in groundwater pollution hazard. Results in the recent scenario (2011) showed that 54% of Dulce Stream Watershed still shows a moderate to a very low contribution to groundwater pollution hazard (mainly in the lower area). Therefore, from the point of view of natural resource management, this is a positive aspect, offering possibilities for intervention in order to prevent deterioration and protect this aquifer system. However, since it is quite possible that this aquifer status (i.e. groundwater quality) changes in the near future, the implementation of planning measures and natural resource management is recommended.
Environmental Science and Pollution Research | 2018
Elena Okada; Débora J. Pérez; Eduardo De Gerónimo; Virginia Carolina Aparicio; Héctor Massone; José Luis Costa
We measured the occurrence and seasonal variations of glyphosate and its metabolite, aminomethylphosphonic acid (AMPA), in different environmental compartments within the limits of an agricultural basin. This topic is of high relevance since glyphosate is the most applied pesticide in agricultural systems worldwide. We were able to quantify the seasonal variations of glyphosate that result mainly from endo-drift inputs, that is, from direct spraying either onto genetically modified (GM) crops (i.e., soybean and maize) or onto weeds in no-till practices. We found that both glyphosate and AMPA accumulate in soil, but the metabolite accumulates to a greater extent due to its higher persistence. Knowing that glyphosate and AMPA were present in soils (> 93% of detection for both compounds), we aimed to study the dispersion to other environmental compartments (surface water, stream sediments, and groundwater), in order to establish the degree of non-point source pollution. Also, we assessed the relationship between the water-table depth and glyphosate and AMPA levels in groundwater. All of the studied compartments had variable levels of glyphosate and AMPA. The highest frequency of detections was found in the stream sediments samples (glyphosate 95%, AMPA 100%), followed by surface water (glyphosate 28%, AMPA 50%) and then groundwater (glyphosate 24%, AMPA 33%). Despite glyphosate being considered a molecule with low vertical mobility in soils, we found that its detection in groundwater was strongly associated with the month where glyphosate concentration in soil was the highest. However, we did not find a direct relation between groundwater table depth and glyphosate or AMPA detections. This is the first simultaneous study of glyphosate and AMPA seasonal variations in soil, groundwater, surface water, and sediments within a rural basin.
Isotopes in Environmental and Health Studies | 2015
Orlando Mauricio Quiroz Londoño; Daniel Martínez; Héctor Massone; Libardo Antonio Londoño Ciro; Cristina Dapeña
Stable isotopes and electrical conductivity in groundwater were used as natural tracers to adjust the hydrogeological conceptual model in one of the largest catchments within the inter-mountainous Pampa plain, Argentina. Geostatistical tools were used to define the model that best fitted the spatial distribution of each tracer, and information was obtained in areas where there was a lack of data. The conventional isotopic analysis allowed the identification of three groundwater groups with different isotopic fingerprints. One group containing 56 % of the total groundwater samples suggested a well-mixed system and soil infiltration precipitation as the main recharge source to the aquifer. The other two groups included samples with depleted (25.5 %) and enriched (18.5 %) isotopic compositions, respectively. The combination of δ18O, δ2H and electrical conductivities maps suggested ascending regional flows and water transfer from the Quequén Grande River catchment to the Moro creek. The spatial interpretation of these tracers modified the conceptual hydrogeological model of the Quequén Grande River.
Wetlands Ecology and Management | 2014
Asunción Romanelli; María Lourdes Lima; Héctor Massone; Karina Soledad Esquius
This study gives an account of the implementation of a decision support system as a logical framework for assessing lake pollution hazard. The use of this system is demonstrated with an example from two lake watersheds, each one with different land-use, soil and topographic characteristics and also management regulations for natural resource protection. Lake pollution hazard is assessed as a function of two primary topics: hydrologic and soil conditions. This model shows the state of each evaluated subwatershed with respect to its potential contribution to lake pollution hazard based mainly on easily measurable and commonly used parameters: drainage density, hydraulic gradient, water table depth, soil media, land-cover and topography. Mapped outputs from the logic model allowed the identification of several subwatersheds in each lake system as the main water resource protection areas. La Brava Lake Watershed results reasonably fit the natural conditions of the watershed, identifying those subwatersheds with a moderate to high drainage density, high hydraulic gradient and extensive agricultural activities. Regarding Los Padres Lake Watershed, moderate to high drainage density, a high to a very high hydraulic gradient, shallow water depth, silt-loam soil texture and intensive agricultural and residential lands, contributed to a high lake pollution hazard. Results highlighted differences between both freshwater systems, being Los Padres Lake Watershed a more vulnerable ecosystem, requiring decision maker’s intervention based on accurate and up-to-date information.
Environmental Earth Sciences | 2017
Daniel Martínez; Karina S.B. Miglioranza; Héctor Massone
Fil: Martinez, Daniel Emilio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Geologia de Costas y del Cuaternario. Provincia de Buenos Aires. Gobernacion. Comision de Investigaciones Cientificas. Instituto de Geologia de Costas y del Cuaternario; Argentina
Hydrogeology Journal | 2008
O. M. Quiroz Londoño; D. E. Martínez; Cristina Dapeña; Héctor Massone
Environmental Management | 1998
Héctor Massone; D. E. Martínez; Jose L. Cionchi; Emilia María Bocanegra