Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hedeff I. Essaid is active.

Publication


Featured researches published by Hedeff I. Essaid.


Water Resources Research | 1995

Simulation of aerobic and anaerobic biodegradation processes at a crude oil spill site

Hedeff I. Essaid; Barbara A. Bekins; E. Michael Godsy; Ean Warren; Mary Jo Baedecker; Isabelle M. Cozzarelli

A two-dimensional, multispecies reactive solute transport model with sequential aerobic and anaerobic degradation processes was developed and tested. The model was used to study the field-scale solute transport and degradation processes at the Bemidji, Minnesota, crude oil spill site. The simulations included the biodegradation of volatile and nonvolatile fractions of dissolved organic carbon by aerobic processes, manganese and iron reduction, and methanogenesis. Model parameter estimates were constrained by published Monod kinetic parameters, theoretical yield estimates, and field biomass measurements. Despite the considerable uncertainty in the model parameter estimates, results of simulations reproduced the general features of the observed groundwater plume and the measured bacterial concentrations. In the simulation, 46% of the total dissolved organic carbon (TDOC) introduced into the aquifer was degraded. Aerobic degradation accounted for 40% of the TDOC degraded. Anaerobic processes accounted for the remaining 60% of degradation of TDOC: 5% by Mn reduction, 19% by Fe reduction, and 36% by methanogenesis. Thus anaerobic processes account for more than half of the removal of DOC at this site.


Journal of Contaminant Hydrology | 2001

Progression of natural attenuation processes at a crude oil spill site: II. Controls on spatial distribution of microbial populations

Barbara A. Bekins; Isabelle M. Cozzarelli; E. Michael Godsy; Ean Warren; Hedeff I. Essaid; Mary Ellen Tuccillo

A multidisciplinary study of a crude-oil contaminated aquifer shows that the distribution of microbial physiologic types is strongly controlled by the aquifer properties and crude oil location. The microbial populations of four physiologic types were analyzed together with permeability, pore-water chemistry, nonaqueous oil content, and extractable sediment iron. Microbial data from three vertical profiles through the anaerobic portion of the contaminated aquifer clearly show areas that have progressed from iron-reduction to methanogenesis. These locations contain lower numbers of iron reducers, and increased numbers of fermenters with detectable methanogens. Methanogenic conditions exist both in the area contaminated by nonaqueous oil and also below the oil where high hydrocarbon concentrations correspond to local increases in aquifer permeability. The results indicate that high contaminant flux either from local dissolution or by advective transport plays a key role in determining which areas first become methanogenic. Other factors besides flux that are important include the sediment Fe(II) content and proximity to the water table. In locations near a seasonally oscillating water table, methanogenic conditions exist only below the lowest typical water table elevation. During 20 years since the oil spill occurred, a laterally continuous methanogenic zone has developed along a narrow horizon extending from the source area to 50-60 m downgradient. A companion paper [J. Contam. Hydrol. 53, 369-386] documents how the growth of the methanogenic zone results in expansion of the aquifer volume contaminated with the highest concentrations of benzene, toluene, ethylbenzene, and xylenes.


Water Resources Research | 1993

Simulation of fluid distributions observed at a crude oil spill site incorporating hysteresis, oil entrapment, and spatial variability of hydraulic properties

Hedeff I. Essaid; William N. Herkelrath; Kathryn M. Hess

Subsurface oil, water, and air saturation distributions were determined using 146 samples collected from seven boreholes along a 120-m transect at a crude oil spill site near Bemidji, Minnesota. The field data, collected 10 years after the spill, show a clearly defined oil body that has an oil saturation distribution that appears to be influenced by sediment heterogeneities and water table fluctuations. The center of the oil body has depressed the water-saturated zone boundary and the oil appears to have migrated laterally within the capillary fringe. A multiphase cross-sectional flow model was developed and used to simulate the movement of oil and water at the spill site. Comparisons between observed and simulated oil saturation distributions serve as an indicator of the appropriateness of using such models to predict the actual spread of organic immiscible liquids at spill sites. Sediment hydraulic properties used in the model were estimated from particle size data. The general large-scale features of the observed oil body were reproduced only when hysteresis with oil entrapment and representations of observed spatial variability of hydraulic properties were incorporated into the model. The small-scale details of the observed subsurface oil distribution were not reproduced in the simulations. The discrepancy between observed and simulated oil distributions reflects the considerable uncertainty in model parameter estimates and boundary conditions, three-phase capillary pressure-saturation-relative permeability functions, representations of spatial variability of hydraulic properties, and hydrodynamics of the groundwater flow system at the study site.


Journal of Contaminant Hydrology | 2003

Inverse modeling of BTEX dissolution and biodegradation at the Bemidji, MN crude-oil spill site.

Hedeff I. Essaid; Isabelle M. Cozzarelli; Robert P. Eganhouse; William N. Herkelrath; Barbara A. Bekins; Geoffrey N. Delin

The U.S. Geological Survey (USGS) solute transport and biodegradation code BIOMOC was used in conjunction with the USGS universal inverse modeling code UCODE to quantify field-scale hydrocarbon dissolution and biodegradation at the USGS Toxic Substances Hydrology Program crude-oil spill research site located near Bemidji, MN. This inverse modeling effort used the extensive historical data compiled at the Bemidji site from 1986 to 1997 and incorporated a multicomponent transport and biodegradation model. Inverse modeling was successful when coupled transport and degradation processes were incorporated into the model and a single dissolution rate coefficient was used for all BTEX components. Assuming a stationary oil body, we simulated benzene, toluene, ethylbenzene, m,p-xylene, and o-xylene (BTEX) concentrations in the oil and ground water, respectively, as well as dissolved oxygen. Dissolution from the oil phase and aerobic and anaerobic degradation processes were represented. The parameters estimated were the recharge rate, hydraulic conductivity, dissolution rate coefficient, individual first-order BTEX anaerobic degradation rates, and transverse dispersivity. Results were similar for simulations obtained using several alternative conceptual models of the hydrologic system and biodegradation processes. The dissolved BTEX concentration data were not sufficient to discriminate between these conceptual models. The calibrated simulations reproduced the general large-scale evolution of the plume, but did not reproduce the observed small-scale spatial and temporal variability in concentrations. The estimated anaerobic biodegradation rates for toluene and o-xylene were greater than the dissolution rate coefficient. However, the estimated anaerobic biodegradation rates for benzene, ethylbenzene, and m,p-xylene were less than the dissolution rate coefficient. The calibrated model was used to determine the BTEX mass balance in the oil body and groundwater plume. Dissolution from the oil body was greatest for compounds with large effective solubilities (benzene) and with large degradation rates (toluene and o-xylene). Anaerobic degradation removed 77% of the BTEX that dissolved into the water phase and aerobic degradation removed 17%. Although goodness-of-fit measures for the alternative conceptual models were not significantly different, predictions made with the models were quite variable.


Journal of Environmental Quality | 2008

Transport and fate of nitrate at the ground-water/surface-water interface

Larry J. Puckett; Celia Zamora; Hedeff I. Essaid; John T. Wilson; Henry M. Johnson; Michael J. Brayton; Jason R. Vogel

Although numerous studies of hyporheic exchange and denitrification have been conducted in pristine, high-gradient streams, few studies of this type have been conducted in nutrient-rich, low-gradient streams. This is a particularly important subject given the interest in nitrogen (N) inputs to the Gulf of Mexico and other eutrophic aquatic systems. A combination of hydrologic, mineralogical, chemical, dissolved gas, and isotopic data were used to determine the processes controlling transport and fate of NO(3)(-) in streambeds at five sites across the USA. Water samples were collected from streambeds at depths ranging from 0.3 to 3 m at three to five points across the stream and in two to five separate transects. Residence times of water ranging from 0.28 to 34.7 d m(-1) in the streambeds of N-rich watersheds played an important role in allowing denitrification to decrease NO(3)(-) concentrations. Where potential electron donors were limited and residence times were short, denitrification was limited. Consequently, in spite of reducing conditions at some sites, NO(3)(-) was transported into the stream. At two of the five study sites, NO(3)(-) in surface water infiltrated the streambeds and concentrations decreased, supporting current models that NO(3)(-) would be retained in N-rich streams. At the other three study sites, hydrogeologic controls limited or prevented infiltration of surface water into the streambed, and ground-water discharge contributed to NO(3)(-) loads. Our results also show that in these low hydrologic-gradient systems, storm and other high-flow events can be important factors for increasing surface-water movement into streambeds.


Ground Water | 2011

Crude oil at the bemidji site: 25 years of monitoring, modeling, and understanding.

Hedeff I. Essaid; Barbara A. Bekins; William N. Herkelrath; Geoffrey N. Delin

The fate of hydrocarbons in the subsurface near Bemidji, Minnesota, has been investigated by a multidisciplinary group of scientists for over a quarter century. Research at Bemidji has involved extensive investigations of multiphase flow and transport, volatilization, dissolution, geochemical interactions, microbial populations, and biodegradation with the goal of providing an improved understanding of the natural processes limiting the extent of hydrocarbon contamination. A considerable volume of oil remains in the subsurface today despite 30 years of natural attenuation and 5 years of pump-and-skim remediation. Studies at Bemidji were among the first to document the importance of anaerobic biodegradation processes for hydrocarbon removal and remediation by natural attenuation. Spatial variability of hydraulic properties was observed to influence subsurface oil and water flow, vapor diffusion, and the progression of biodegradation. Pore-scale capillary pressure-saturation hysteresis and the presence of fine-grained sediments impeded oil flow, causing entrapment and relatively large residual oil saturations. Hydrocarbon attenuation and plume extent was a function of groundwater flow, compound-specific volatilization, dissolution and biodegradation rates, and availability of electron acceptors. Simulation of hydrocarbon fate and transport affirmed concepts developed from field observations, and provided estimates of field-scale reaction rates and hydrocarbon mass balance. Long-term field studies at Bemidji have illustrated that the fate of hydrocarbons evolves with time, and a snap-shot study of a hydrocarbon plume may not provide information that is of relevance to the long-term behavior of the plume during natural attenuation.


Journal of Environmental Quality | 2008

Using heat to characterize streambed water flux variability in four stream reaches.

Hedeff I. Essaid; Celia Zamora; Kathleen A. McCarthy; Jason R. Vogel; John T. Wilson

Estimates of streambed water flux are needed for the interpretation of streambed chemistry and reactions. Continuous temperature and head monitoring in stream reaches within four agricultural watersheds (Leary Weber Ditch, IN; Maple Creek, NE; DR2 Drain, WA; and Merced River, CA) allowed heat to be used as a tracer to study the temporal and spatial variability of fluxes through the streambed. Synoptic methods (seepage meter and differential discharge measurements) were compared with estimates obtained by using heat as a tracer. Water flux was estimated by modeling one-dimensional vertical flow of water and heat using the model VS2DH. Flux was influenced by physical heterogeneity of the stream channel and temporal variability in stream and ground-water levels. During most of the study period (April-December 2004), flux was upward through the streambeds. At the IN, NE, and CA sites, high-stage events resulted in rapid reversal of flow direction inducing short-term surface-water flow into the streambed. During late summer at the IN site, regional ground-water levels dropped, leading to surface-water loss to ground water that resulted in drying of the ditch. Synoptic measurements of flux generally supported the model flux estimates. Water flow through the streambed was roughly an order of magnitude larger in the humid basins (IN and NE) than in the arid basins (WA and CA). Downward flux, in response to sudden high streamflows, and seasonal variability in flux was most pronounced in the humid basins and in high conductivity zones in the streambed.


Water Resources Research | 1997

Multiphase flow modeling of a crude-oil spill site with a bimodal permeability distribution

Leslie A. Dillard; Hedeff I. Essaid; William N. Herkelrath

Fluid saturation, particle-size distribution, and porosity measurements were obtained from 269 core samples collected from six boreholes along a 90-m transect at a subregion of a crude-oil spill site, the north pool, near Bemidji, Minnesota. The oil saturation data, collected 11 years after the spill, showed an irregularly shaped oil body that appeared to be affected by sediment spatial variability. The particle-size distribution data were used to estimate the permeability (k) and retention curves for each sample. An additional 344 k estimates were obtained from samples previously collected at the north pool. The 613 k estimates were distributed bimodal lognormally with the two population distributions corresponding to the two predominant lithologies: a coarse glacial outwash deposit and fine-grained interbedded lenses. A two-step geostatistical approach was used to generate a conditioned realization of k representing the bimodal heterogeneity. A cross-sectional multiphase flow model was used to simulate the flow of oil and water in the presence of air along the north pool transect for an 11-year period. The inclusion of a representation of the bimodal aquifer heterogeneity was crucial for reproduction of general features of the observed oil body. If the bimodal heterogeneity was characterized, hysteresis did not have to be incorporated into the model because a hysteretic effect was produced by the sediment spatial variability. By revising the relative permeability functional relation, an improved reproduction of the observed oil saturation distribution was achieved. The inclusion of water table fluctuations in the model did not significantly affect the simulated oil saturation distribution.


Journal of Contaminant Hydrology | 2010

In situ measurements of volatile aromatic hydrocarbon biodegradation rates in groundwater

Isabelle M. Cozzarelli; Barbara A. Bekins; Robert P. Eganhouse; Ean Warren; Hedeff I. Essaid

Benzene and alkylbenzene biodegradation rates and patterns were measured using an in situ microcosm in a crude-oil contaminated aquifer near Bemidji, Minnesota. Benzene-D6, toluene, ethylbenzene, o-, m- and p-xylenes and four pairs of C(3)- and C(4)-benzenes were added to an in situ microcosm and studied over a 3-year period. The microcosm allowed for a mass-balance approach and quantification of hydrocarbon biodegradation rates within a well-defined iron-reducing zone of the anoxic plume. Among the BTEX compounds, the apparent order of persistence is ethylbenzene > benzene > m,p-xylenes > o-xylene >or= toluene. Threshold concentrations were observed for several compounds in the in situ microcosm, below which degradation was not observed, even after hundreds of days. In addition, long lag times were observed before the onset of degradation of benzene or ethylbenzene. The isomer-specific degradation patterns were compared to observations from a multi-year study conducted using data collected from monitoring wells along a flowpath in the contaminant plume. The data were fit with both first-order and Michaelis-Menten models. First-order kinetics provided a good fit for hydrocarbons with starting concentrations below 1mg/L and Michaelis-Menten kinetics were a better fit when starting concentrations were above 1mg/L, as was the case for benzene. The biodegradation rate data from this study were also compared to rates from other investigations reported in the literature.


Water Resources Research | 2015

Organic contaminant transport and fate in the subsurface: Evolution of knowledge and understanding

Hedeff I. Essaid; Barbara A. Bekins; Isabelle M. Cozzarelli

Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.

Collaboration


Dive into the Hedeff I. Essaid's collaboration.

Top Co-Authors

Avatar

Barbara A. Bekins

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Jim Constantz

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Isabelle M. Cozzarelli

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

William N. Herkelrath

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

John C. Risley

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Stewart A. Rounds

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Ean Warren

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

John T. Wilson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Geoffrey N. Delin

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Kathleen A. McCarthy

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge