Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hee Kyung Hong is active.

Publication


Featured researches published by Hee Kyung Hong.


Nature Reviews Genetics | 2008

The genetics of mammalian circadian order and disorder: implications for physiology and disease

Joseph S. Takahashi; Hee Kyung Hong; Caroline H. Ko; Erin L. McDearmon

Circadian cycles affect a variety of physiological processes, and disruptions of normal circadian biology therefore have the potential to influence a range of disease-related pathways. The genetic basis of circadian rhythms is well studied in model organisms and, more recently, studies of the genetic basis of circadian disorders has confirmed the conservation of key players in circadian biology from invertebrates to humans. In addition, important advances have been made in understanding how these molecules influence physiological functions in tissues throughout the body. Together, these studies set the scene for applying our knowledge of circadian biology to the understanding and treatment of a range of human diseases, including cancer and metabolic and behavioural disorders.


Science | 2009

Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis.

Kathryn Moynihan Ramsey; Jun Yoshino; Cynthia S. Brace; Dana Abrassart; Yumiko Kobayashi; Biliana Marcheva; Hee Kyung Hong; Jason L. Chong; Ethan D. Buhr; Choogon Lee; Joseph S. Takahashi; Shin-ichiro Imai; Joseph Bass

Circadian Oscillations The 24-hour day-night cycle plays an important role in mammalian physiology and behavior and, as most travelers are well aware, there is an intimate link between our in-built circadian clocks and metabolic rhythms. This link is in part forged by the protein deacetylase SIRT1, which regulates the clocks molecular circuitry. SIRT1 uses as a cofactor the cellular metabolite NAD+, which is synthesized through a salvage pathway that includes the enzyme nicotinamide phosphoribosyltransferase (NAMPT) (see the Perspective by Wijnen). Ramsey et al. (p. 651; published online 19 March) and Nakahata et al. (p. 654, published online 12 March) now show that NAMPT and NAD+ levels oscillate during the daily 24-hour cycle and that this oscillation is regulated by the circadian clock. Furthermore, the oscillations in NAD+ modulate the activity of SIRT1 feeding back into the circadian clock. A transcriptional-enzymatic feedback loop controls interactions between metabolism and circadian rhythms in mouse cells. The circadian clock is encoded by a transcription-translation feedback loop that synchronizes behavior and metabolism with the light-dark cycle. Here we report that both the rate-limiting enzyme in mammalian nicotinamide adenine dinucleotide (NAD+) biosynthesis, nicotinamide phosphoribosyltransferase (NAMPT), and levels of NAD+ display circadian oscillations that are regulated by the core clock machinery in mice. Inhibition of NAMPT promotes oscillation of the clock gene Per2 by releasing CLOCK:BMAL1 from suppression by SIRT1. In turn, the circadian transcription factor CLOCK binds to and up-regulates Nampt, thus completing a feedback loop involving NAMPT/NAD+ and SIRT1/CLOCK:BMAL1.


Science | 2006

Dissecting the Functions of the Mammalian Clock Protein BMAL1 by Tissue-Specific Rescue in Mice

Erin L. McDearmon; Kush N. Patel; Caroline H. Ko; Jacqueline A. Walisser; Andrew C. Schook; Jason L. Chong; Lisa D. Wilsbacher; Eun Joo Song; Hee Kyung Hong; Christopher A. Bradfield; Joseph S. Takahashi

The basic helix-loop-helix (bHLH)–Per-Arnt-Sim (PAS) domain transcription factor BMAL1 is an essential component of the mammalian circadian pacemaker. Bmal1–/– mice lose circadian rhythmicity but also display tendon calcification and decreased activity, body weight, and longevity. To investigate whether these diverse functions of BMAL1 are tissue-specific, we produced transgenic mice that constitutively express Bmal1 in brain or muscle and examined the effects of rescued gene expression in Bmal1–/– mice. Circadian rhythms of wheel-running activity were restored in brain-rescued Bmal1–/– mice in a conditional manner; however, activity levels and body weight were lower than those of wild-type mice. In contrast, muscle-rescued Bmal1–/– mice exhibited normal activity levels and body weight yet remained behaviorally arrhythmic. Thus, Bmal1 has distinct tissue-specific functions that regulate integrative physiology.


Cell | 2013

Competing E3 Ubiquitin Ligases Govern Circadian Periodicity by Degradation of CRY in Nucleus and Cytoplasm

Seung Hee Yoo; Jennifer A. Mohawk; Sandra M. Siepka; Yongli Shan; Seong Kwon Huh; Hee Kyung Hong; Izabela Kornblum; Vivek Kumar; Nobuya Koike; Ming Xu; Justin Nussbaum; Xinran Liu; Zheng Chen; Zhijian J. Chen; Carla B. Green; Joseph S. Takahashi

Period determination in the mammalian circadian clock involves the turnover rate of the repressors CRY and PER. We show that CRY ubiquitination engages two competing E3 ligase complexes that either lengthen or shorten circadian period in mice. Cloning of a short-period circadian mutant, Past-time, revealed a glycine to glutamate missense mutation in Fbxl21, an F-box protein gene that is a paralog of Fbxl3 that targets the CRY proteins for degradation. While loss of function of FBXL3 leads to period lengthening, mutation of Fbxl21 causes period shortening. FBXL21 forms an SCF E3 ligase complex that slowly degrades CRY in the cytoplasm but antagonizes the stronger E3 ligase activity of FBXL3 in the nucleus. FBXL21 plays a dual role: protecting CRY from FBXL3 degradation in the nucleus and promoting CRY degradation within the cytoplasm. Thus, the balance and cellular compartmentalization of competing E3 ligases for CRY determine circadian period of the clock in mammals.


Science | 2015

Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion.

Mark Perelis; Biliana Marcheva; Kathryn Moynihan Ramsey; Matthew J. Schipma; Alan L. Hutchison; Akihiko Taguchi; Clara Bien Peek; Hee Kyung Hong; Wenyu Huang; Chiaki Omura; Amanda L. Allred; Christopher A. Bradfield; Aaron R. Dinner; Grant D. Barish; Joseph Bass

The clockwork of insulin release In healthy people, blood glucose levels are maintained within a narrow range by several physiological mechanisms. Key among them is the release of the hormone insulin by pancreatic β cells, which occurs when glucose levels rise after a meal. In response to insulin, blood glucose is taken up by tissues that need fuel, such as muscle. β cells can anticipate the bodys varying demand for insulin throughout the 24-hour day because they have their own circadian clock. How this clock controls insulin release has been unclear. Perelis et al. now show that the activity of transcriptional enhancers specific to β cells regulates the rhythmic expression of genes involved in the assembly and trafficking of insulin secretory vesicles (see the Perspective by Dibner and Schibler). Science, this issue p. 10.1126/science.aac4250; see also p. 628 Circadian control of insulin release is mediated by transcriptional enhancers active specifically in pancreatic β cells. [Also see Perspective by Dibner and Schibler] INTRODUCTION The circadian clock is a molecular oscillator that coordinates behavior and physiology in anticipation of the daily light cycle. Desynchrony of circadian cycles, through genetic or environmental perturbation, contributes to metabolic disorders such as cardiovascular disease, obesity, and type 2 diabetes. We previously showed that disruption of the clock transcription factors CLOCK and BMAL1 in the pancreas causes hypoinsulinemic diabetes in mice. The mechanism(s) linking clock dysfunction to pancreatic β cell failure and the means by which CLOCK and BMAL1 affect glucose metabolism in the whole organism are not well understood. RATIONALE The circadian system helps to maintain glucose homeostasis across the sleep-wake cycle. This system requires cross-talk between the master clock in the central nervous system, which coordinates feeding and sleep, and peripheral tissue clocks, which synchronize behavior with the storage, mobilization, and synthesis of glucose. Although it is clear that clocks within distinct organs participate in glucose turnover, the molecular basis for time-of-day variation in organismal glucose responsiveness is still not understood. Here, we combined genome-wide analyses with gene targeting in mice to study the impact of the cell-autonomous clock on β cell function. RESULTS We found that cell-autonomous expression of CLOCK and BMAL1 in pancreatic islets isolated from wild-type mice generates robust 24-hour rhythms of glucose- and potassium chloride–stimulated insulin secretion ex vivo. About 27% of the β cell transcriptome exhibited circadian oscillation. Many of these transcripts correspond to genes coding for proteins that are involved in the assembly, trafficking, and membrane fusion of vesicles that participate in insulin secretion. Chromatin immunoprecipitation sequencing revealed that CLOCK and BMAL1 regulate cycling genes in β cells by binding at distal regulatory elements distinct from those controlling the circadian transcription of metabolic gene networks within the liver. The regulatory sites of cycling genes in the β cell resided primarily within transcriptionally active enhancers that were also bound by the pancreatic transcription factor PDX1. Finally, we found that in islets from adult mice, Bmal1 ablation either in vivo or ex vivo abrogates nutrient-responsive insulin secretion, demonstrating clock control of pancreatic β cell function throughout adult life. CONCLUSION Our results show that local clock-driven genomic rhythms program cell function across the light-dark cycle, including the priming of insulin secretion within limited time windows each day. Cell type–specific transcriptional regulation by the clock localizes to rhythmic enhancers that are unique to the β cell. Thus, our findings uncover a transcriptional process through which the core clock aligns physiology with the light cycle, revealing pathways that are important in both health and disease states such as type 2 diabetes. β cell–specific enhancers control the rhythmic transcription of genes linked to insulin secretion. Peripheral clocks maintain glucose homeostasis across the sleep-wake cycle by gating β cell insulin secretion through genome-wide transcriptional control of the assembly and trafficking of insulin secretory vesicles. Clock transcription factors bind within cell type–specific enhancer neighborhoods of cycling genes, revealing the mechanisms that synchronize rhythmic metabolism at transcriptional and physiologic levels across the light-dark cycle. The mammalian transcription factors CLOCK and BMAL1 are essential components of the molecular clock that coordinate behavior and metabolism with the solar cycle. Genetic or environmental perturbation of circadian cycles contributes to metabolic disorders including type 2 diabetes. To study the impact of the cell-autonomous clock on pancreatic β cell function, we examined pancreatic islets from mice with either intact or disrupted BMAL1 expression both throughout life and limited to adulthood. We found pronounced oscillation of insulin secretion that was synchronized with the expression of genes encoding secretory machinery and signaling factors that regulate insulin release. CLOCK/BMAL1 colocalized with the pancreatic transcription factor PDX1 within active enhancers distinct from those controlling rhythmic metabolic gene networks in liver. We also found that β cell clock ablation in adult mice caused severe glucose intolerance. Thus, cell type–specific enhancers underlie the circadian control of peripheral metabolism throughout life and may help to explain its dysregulation in diabetes.


Diabetes & Metabolism | 2014

Circadian disruption in the pathogenesis of metabolic syndrome

Eleonore Maury; Hee Kyung Hong; Joseph Bass

Metabolic syndrome is a multifactorial process induced by a combination of genetic and environmental factors and recent evidence has highlighted that circadian disruption and sleep loss contribute to disease pathogenesis. Emerging work in experimental genetic models has provided insight into the mechanistic basis for clock disruption in disease. Indeed, disruption of the clock system perturbs both neuroendocrine pathways within the hypothalamus important in feeding and energetics, in addition to peripheral tissues involved in glucose and lipid metabolism. This review illustrates the impact of molecular clock disruptions at the level of both brain and behavior and peripheral tissues, with a focus on how such dysregulation in turn impacts lipid and glucose homeostasis, inflammation and cardiovascular function. New insight into circadian biology may ultimately lead to improved therapeutics for metabolic syndrome and cardiovascular disease in humans.


eLife | 2013

Usf1, a suppressor of the circadian Clock mutant, reveals the nature of the DNA-binding of the CLOCK:BMAL1 complex in mice

Kazuhiro Shimomura; Vivek Kumar; Nobuya Koike; Tae Kyung Kim; Jason L. Chong; Ethan D. Buhr; Andrew Whiteley; Sharon S. Low; Chiaki Omura; Deborah Fenner; Joseph R. Owens; Marc Richards; Seung Hee Yoo; Hee Kyung Hong; Martha Hotz Vitaterna; Joseph Bass; Mathew T. Pletcher; Tim Wiltshire; John B. Hogenesch; Phillip L. Lowrey; Joseph S. Takahashi

Genetic and molecular approaches have been critical for elucidating the mechanism of the mammalian circadian clock. Here, we demonstrate that the ClockΔ19 mutant behavioral phenotype is significantly modified by mouse strain genetic background. We map a suppressor of the ClockΔ19 mutation to a ∼900 kb interval on mouse chromosome 1 and identify the transcription factor, Usf1, as the responsible gene. A SNP in the promoter of Usf1 causes elevation of its transcript and protein in strains that suppress the Clock mutant phenotype. USF1 competes with the CLOCK:BMAL1 complex for binding to E-box sites in target genes. Saturation binding experiments demonstrate reduced affinity of the CLOCKΔ19:BMAL1 complex for E-box sites, thereby permitting increased USF1 occupancy on a genome-wide basis. We propose that USF1 is an important modulator of molecular and behavioral circadian rhythms in mammals. DOI: http://dx.doi.org/10.7554/eLife.00426.001


Human Genetics | 1991

The COL6A1 and COL6A2 genes exist as a gene cluster and detect highly informative DNA polymorphisms in the telomeric region of human chromosome 21q

Clair A. Francomano; Garry R. Cutting; Mary Kay McCormick; Rupert Timpl; Hee Kyung Hong

SummaryThe genes that encode the alpha 1 (VI) and alpha 2 (VI) collagen chains, designated COL6A1 and COL6A2, map to human chromosomal band 21q22.3. Using pulsed-field gel electrophoresis and somatic cell hybrids, we found that COL6A1 and COL6A2 form a gene cluster on the most distal part of chromosome 21. Furthermore, we detected several DNA polymorphisms (both restriction site and VNTRs) associated with these loci. These polymorphisms make the COL6A1 and COL6A2 genes among the most informative markers on human chromosome 21.


Journal of Biological Chemistry | 2011

Generation of N-Ethyl-N-nitrosourea (ENU) Diabetes Models in Mice Demonstrates Genotype-specific Action of Glucokinase Activators

Deborah Fenner; Stella Odili; Hee Kyung Hong; Yumiko Kobayashi; Akira Kohsaka; Sandra M. Siepka; Martha Hotz Vitaterna; Pan Chen; Bogumil Zelent; Joseph Grimsby; Joseph S. Takahashi; Franz M. Matschinsky; Joseph Bass

Background: ENU mutagenesis was used to generate new animal models of diabetes. Results: We identified two novel mutations in glucokinase, with glucose >400 mg/dl in homozygotes, and differential responsiveness to glucokinase activators. Conclusion: Increased GCK thermolability is a major cause of hyperglycemia in Gck mutant mice. Significance: Chemical genetics creates new models to study glucose homeostasis and diabetes drugs. We performed genome-wide mutagenesis in C57BL/6J mice using N-ethyl-N-nitrosourea to identify mutations causing high blood glucose early in life and to produce new animal models of diabetes. Of a total of 13 new lines confirmed by heritability testing, we identified two semi-dominant pedigrees with novel missense mutations (GckK140E and GckP417R) in the gene encoding glucokinase (Gck), the mammalian glucose sensor that is mutated in human maturity onset diabetes of the young type 2 and the target of emerging anti-hyperglycemic agents that function as glucokinase activators (GKAs). Diabetes phenotype corresponded with genotype (mild-to-severe: Gck+/+ < GckP417R/+, GckK140E/+ < GckP417R/P417R, GckP417R/K140E, and GckK140E/K140E) and with the level of expression of GCK in liver. Each mutant was produced as the recombinant enzyme in Escherichia coli, and analysis of kcat and tryptophan fluorescence (I320/360) during thermal shift unfolding revealed a correlation between thermostability and the severity of hyperglycemia in the whole animal. Disruption of the glucokinase regulatory protein-binding site (GCKK140E), but not the ATP binding cassette (GCKP417R), prevented inhibition of enzyme activity by glucokinase regulatory protein and corresponded with reduced responsiveness to the GKA drug. Surprisingly, extracts from liver of diabetic GCK mutants inhibited activity of the recombinant enzyme, a property that was also observed in liver extracts from mice with streptozotocin-induced diabetes. These results indicate a relationship between genotype, phenotype, and GKA efficacy. The integration of forward genetic screening and biochemical profiling opens a pathway for preclinical development of mechanism-based diabetes therapies.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Second-generation high-throughput forward genetic screen in mice to isolate subtle behavioral mutants

Vivek Kumar; Kyungin Kim; Chryshanthi Joseph; Lisa C. Thomas; Hee Kyung Hong; Joseph S. Takahashi

Forward genetic screens have been highly successful in revealing roles of genes and pathways in complex biological events. Traditionally these screens have focused on isolating mutants with the greatest phenotypic deviance, with the hopes of discovering genes that are central to the biological event being investigated. Behavioral screens in mice typically use simple activity-based assays as endophenotypes for more complex emotional states of the animal. They generally set the selection threshold for a putative mutant at 3 SDs (z score of 3) from the average behavior of normal animals to minimize false-positive results. Behavioral screens using a high threshold for detection have generally had limited success, with high false-positive rates and subtle phenotypic differences that have made mapping and cloning difficult. In addition, targeted reverse genetic approaches have shown that when genes central to behaviors such as open field behavior, psychostimulant response, and learning and memory tasks are mutated, they produce subtle phenotypes that differ from wild-type animals by 1 to 2 SDs (z scores of 1 to 2). We have conducted a second-generation (G2) dominant N-ethyl-N-nitrosourea (ENU) screen especially designed to detect subtle behavioral mutants for open field activity and psychostimulant response behaviors. We successfully detect mutant lines with only 1 to 2 SD shifts in mean response compared with wild-type control animals and present a robust statistical and methodological framework for conducting such forward genetic screens. Using this methodology we have screened 229 ENU mutant lines and have identified 15 heritable mutant lines. We conclude that for screens in mice that use activity-based endophenotypic measurements for complex behavioral states, this G2 screening approach yields better results.

Collaboration


Dive into the Hee Kyung Hong's collaboration.

Top Co-Authors

Avatar

Joseph S. Takahashi

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joseph Bass

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiaki Omura

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge