Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heejung Jung is active.

Publication


Featured researches published by Heejung Jung.


Aerosol Science and Technology | 2005

Characterization of Aerosol Surface Instruments in Transition Regime

Heejung Jung; David B. Kittelson

The primary purpose of this study is to measure the size- and composition-dependent responses of aerosol surface instruments designed to measure surface area related properties. Measurements were conducted in the range of 30–150 nm of mobility equivalent diameter, Dp. The responses of a LQ1-DC (a diffusion charger manufactured by Matter Engineering AG) and an EAD (a diffusion charger manufactured by TSI) to singlets (NaCl) particles are proportional to Dp 1.36 and Dp 1.13, respectively. The response of LQ1-DC agrees with Fuchs surface area, which is proportional to Dp 1.39 within 2.4% error. The response of the EAD is almost proportional to diameter, Dp. A PAS2000CE (Photoelectric Aerosol Sensor manufactured by EcoChem) gave both size and composition-dependent responses. For diesel particles produced at high engine loads, the response was nearly proportional to Fuchs surface area. However, at lighter engine loads, the response dropped sharply with decreasing Dp. Light engine loads are associated with high fractions of volatile particles that may suppress the photoemission response. The secondary purpose of this study is to investigate the difference in charging rate between singlets (NaCl particles) and agglomerates (diesel particles) by using diffusion chargers. Agglomerates (diesel particles at engine load 75%) acquire more charge than singlets (NaCl particles) by 15 and 17% for LQ1-DC and EAD, respectively.


Aerosol Science and Technology | 2009

Evaluation of the European PMP Methodologies during On-Road and Chassis Dynamometer Testing for DPF Equipped Heavy-Duty Diesel Vehicles

Kent C. Johnson; Thomas D. Durbin; Heejung Jung; Ajay Chaudhary; David R. Cocker; Jorn D. Herner; William H. Robertson; Tao Huai; Alberto Ayala; David B. Kittelson

This study evaluated the UN-ECE Particle Measurement Programme (PMP) protocol for the measurement of solid particle number emissions under laboratory and on-road conditions for two passive diesel particle filters (DPF)–equipped medium and heavy-heavy duty diesel vehicles. The PMP number emissions were lower than the European light-duty certification value (9.6 × 1011 #/mi) for all standardized cycles, but exceeded this value during some higher load on-road driving conditions. Particle number measurements were generally less variable than those of the PM mass for the on-road testing, but had comparable or greater variability than PM mass for the laboratory measurements due to outliers. These outliers appear to be real events that are not apparent with integrated filter methods. The particle number measurements for the low cut point CPCs (3–7 nm) below the PMP system were approximately an order of magnitude higher than those for the PMP-compliant CPC (23 nm), indicating the presence of a large fraction of solid sub-23 nm particles. Although such particles are defined as solid by the PMP method, their actual state is unknown. Nucleation particles with a large sulfate contribution formed under a variety of conditions when the exhaust temperature near the DPF exceeded a “critical” temperature, typically >300°C.


SAE Powertrain & Fluid Systems Conference & Exhibition | 2003

The Influence of Engine Lubricating Oil on Diesel Nanoparticle Emissions and Kinetics of Oxidation

Heejung Jung; David B. Kittelson; Michael R. Zachariah

Earlier work [1] shows that kinetics of Diesel soot oxidation is different from that of ethylene diffusion flame soot oxidation [2], possibly due to metals from lube oil. This study investigates the influence of metals on soot oxidation and the exhaust particle emissions using lube oil dosed fuel (2 % by volume). This method does not simulate normal lube oil consumption, but is used as a means of adding metals to particles for oxidation studies. This study also provides insight into the effect of systems that mix lube oil with fuel to minimize oil change service. The HTO-TDMA (High Temperature Oxidation-Tandem Differential Mobility Analyzer) technique [1] was used to measure the surface specific oxidation rate of Diesel particles over the temperature range 500-750 °C. Diesel particles sampled from the exhaust stream of a Diesel engine were size segregated by differential mobility and oxidized in situ in air in a heated flow tube of known residence time and temperature profile. The change in particle diameter after oxidation took place was measured and converted into the surface specific oxidation rate. The pre-exponential factors increased by about a factor of two, whereas the activation energy determined for the lubrication oil dosed Diesel particles was very close to that of undosed Diesel particles (108 kJ mol -1 , [1]). This suggests that the increase of active sites by the presence of Ca (and possibly by other metals included in the additive package of the lube oil) results in the faster oxidation rate. Particle size measurements show that particle volume emissions, which are roughly proportional to particle mass, decreased by about a factor of two, but that particle number emissions increased by an order of magnitude with lube oil dosed fuel.


Aerosol Science and Technology | 2011

Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber

Shunsuke Nakao; ManishKumar B. Shrivastava; Anh P. Nguyen; Heejung Jung; David R. Cocker

Secondary organic aerosol (SOA) formation from diesel exhaust was investigated using an environmental chamber. Particle volume measurement based solely on mobility diameter underestimated the SOA formation from diesel exhaust due to the external void space of agglomerate particles. Therefore, particle mass concentration and fractal-like dimension was determined from the particle effective density as a function of particle mass using an aerosol particle mass analyzer and scanning mobility particle sizer (APM–SMPS). Continuous aging of aerosol measured by an increase of atomic ratio (O/C) underscored the importance of multigenerational oxidation of low-volatile organic vapors emitted from diesel engine as a possible significant source of ambient oxygenated SOA. Higher particle effective densities were observed when raw exhaust was injected into a full bag as opposed to filling a bag with diluted exhaust using an ejector diluter. This suggests that the dilution method, in addition to dilution ratio, may impact the evaporation of semivolatile species. This study demonstrates the critical need to evaluate particle mass when evaluating SOA formation onto fractal particles such as diesel exhaust.


Environmental Science & Technology | 2010

Kinetics of soot oxidation by NO2.

ManishKumar B. Shrivastava; Anh P. Nguyen; Zhongqing Zheng; Hao-Wei Wu; Heejung Jung

Modern technologies use NO(2) to promote low-temperature soot oxidation for diesel particulate filter regeneration. In this study, the online aerosol technique of high-temperature oxidation tandem differential mobility analysis is used to study kinetics of soot oxidation by NO(2). Soot particles are exposed to varying temperature and NO(2) mixing ratio inside the furnace resulting from thermal decomposition of NO(2) to NO. This causes soot oxidation rates to vary throughout the furnace. Variations in temperatures and NO(2) mixing ratio are thoroughly accounted for the first time. Soot oxidation rates are calculated as a function of frequency factor A(soot), activation energy E(soot), and concentration of NO(2) within the furnace at temperatures ranging from 500 to 950 degrees C. Results suggest A(soot) and E(soot) values for soot oxidation of 2.4 x 10(-14) (nm K(-0.5) s(-1) cm(3) molecule(-1)) and 47.1 kJ mol(-1), respectively, when reaction order to NO(2) is assumed as unity. The activation energy for soot oxidation with NO(2) is significantly lower than oxidation with air. However, parts per million levels of NO(2) cause soot oxidation at low temperatures suggesting NO(2) is a stronger oxidant than O(2).


Aerosol Science and Technology | 2005

Measurement of Electrical Charge on Diesel Particles

Heejung Jung; David B. Kittelson

Nanoparticles (D p < 50 nm), which are formed as diesel engine exhaust cools and dilutes, constitute minority of total particle mass but majority of total particle number. There are several different theories to explain the nucleation of nanoparticles from diesel exhaust. The two main theories are homogeneous binary nucleation of sulfuric acid and water, and ion-induced nucleation. This study examined the ion-induced nucleation theory. In order to test the ionic nucleation theory, the charged fraction of the diesel particles were measured as a function of particle size using regular diesel fuel in this study. A very small amount of charge was found for the diesel nanoparticles in the nuclei mode, whereas there was a large charged fraction for the diesel particles in the accumulation mode. If ion-induced nucleation were the dominant mechanism for the nucleation of nanoparticles from diesel exhaust, one would expect a significant charge on the nuclei mode particles. The results from this study suggest that ion-induced binary nucleation is at least not a dominant mechanism for the nucleation of diesel exhaust when using regular diesel fuel. This study also examined the influence of metal additives on nucleation and particle charging. The metal additives examined are of the type used to enhance particle oxidation in diesel particulate filters. When used, the additives led to a large increase in the concentration of solid particles in the nuclei mode, and significantly raised the level of particle charge for particles of all sizes. When additives were used, some of the solid particles in the nuclei mode carried a charge. We believe that these metal related particles form early enough in the combustion process to be charged by ions present during and shortly after combustion.


SAE 2014 World Congress & Exhibition | 2014

Determination of Suspended Exhaust PM Mass for Light-Duty Vehicles

Yang Li; Jian Xue; Kent Johnson; Thomas D. Durbin; Mark Villela; Liem Pham; Seyedehsan Hosseini; Zhongqing Zheng; Daniel Short; George Karavalakis; Akua Asa-Awuku; Heejung Jung; Xiaoliang Wang; David C. Quiros; Shaohua Hu; Tao Huai; Alberto Ayala

This study provides one of the first evaluations of the integrated particle size distribution (IPSD) method in comparison with the current gravimetric method for measuring particulate matter (PM) emissions from light-duty vehicles. The IPSD method combines particle size distributions with size dependent particle effective density to determine mass concentrations of suspended particles. The method allows for simultaneous determination of particle mass, particle surface area, and particle number concentrations. It will provide a greater understanding of PM mass emissions at low levels, and therefore has the potential to complement the current gravimetric method at low PM emission levels. Six vehicles, including three gasoline direct injected (GDI) vehicles, two port fuel injected (PFI) vehicles, and one diesel vehicle, were tested over the Federal Test Procedure (FTP) driving cycle on a light-duty chassis dynamometer. PM mass emissions were determined by the gravimetric (MGravimetric) and IPSD (MIPSD) methods. The results show a systematic bias between methods, with the MIPSD underestimating particle mass relative to MGravimetric (MIPSD = 0.63 × MGravimetric), although there is a relatively strong correlation (R2=0.79) between the methods. The real-time MIPSD showed that more than 55% of the PM mass comes from the first 100 seconds of the FTP for GDI vehicles.


Environmental Science & Technology | 2014

Assessing the Impacts of Ethanol and Isobutanol on Gaseous and Particulate Emissions from Flexible Fuel Vehicles

Georgios Karavalakis; Daniel Short; Robert L. Russell; Heejung Jung; Kent Johnson; Akua Asa-Awuku; Thomas D. Durbin

This study investigated the effects of higher ethanol blends and an isobutanol blend on the criteria emissions, fuel economy, gaseous toxic pollutants, and particulate emissions from two flexible-fuel vehicles equipped with spark ignition engines, with one wall-guided direct injection and one port fuel injection configuration. Both vehicles were tested over triplicate Federal Test Procedure (FTP) and Unified Cycles (UC) using a chassis dynamometer. Emissions of nonmethane hydrocarbons (NMHC) and carbon monoxide (CO) showed some statistically significant reductions with higher alcohol fuels, while total hydrocarbons (THC) and nitrogen oxides (NOx) did not show strong fuel effects. Acetaldehyde emissions exhibited sharp increases with higher ethanol blends for both vehicles, whereas butyraldehyde emissions showed higher emissions for the butanol blend relative to the ethanol blends at a statistically significant level. Particulate matter (PM) mass, number, and soot mass emissions showed strong reductions with increasing alcohol content in gasoline. Particulate emissions were found to be clearly influenced by certain fuel parameters including oxygen content, hydrogen content, and aromatics content.


Aerosol Science and Technology | 2008

Investigation of Diesel Nanoparticle Nucleation Mechanisms

Hongbin Ma; Heejung Jung; David B. Kittelson

Most of the nanoparticle number emissions from diesel engines are found in the nucleation mode (D p < ∼ 30nm). These nanoparticles are mainly formed by nucleation as diesel engine exhaust gas cools and dilutes in the atmosphere. Diesel nanoparticles have raised concerns because of their suspected human health effects. There are two main theories describing diesel nanoparticle nucleation: homogeneous nucleation, most likely binary of sulfuric acid and water, and ion-induced nucleation. In this study we assess the likelihood of the ionic mechanism. Previous studies have shown that diesel nucleation mode particles carry little or no electrical charge (Jung and Kittelson 2005). This could be due to the fact that those particles were never charged, or it could be due to the fact that they were neutralized quickly during dilution and sampling. In the first part of this study, we estimated the extent of neutralization of charged nuclei during the dilution process and found it too slow compared to the residence time in our system to account for the absence of charge observed in previous work. In the second part of this study, we compared nuclei mode formation with and without chemi-ions during dilution and sampling by using an ion trap at the upstream of dilution. Removing upstream ions had no significant influence on the nucleation mode, suggesting that ionic nucleation did not play an important role. We also calculated ion concentration histories, accounting for recombination and attachment during expansion stroke in after combustion. This calculation indicates that ion concentration in the exhaust is too low to account for nucleation mode formation.


International Journal of Environmental Research and Public Health | 2016

Ultrafine Particle Metrics and Research Considerations: Review of the 2015 UFP Workshop.

Richard Baldauf; Robert B. Devlin; Peter Gehr; Robert Giannelli; Beth Hassett-Sipple; Heejung Jung; Giorgio Martini; Joseph McDonald; Jason D. Sacks; Katherine Walker

In February 2015, the United States Environmental Protection Agency (EPA) sponsored a workshop in Research Triangle Park, NC, USA to review the current state of the science one missions, air quality impacts, and health effects associated with exposures to ultrafine particles[1].[...].

Collaboration


Dive into the Heejung Jung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akua Asa-Awuku

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Short

University of California

View shared research outputs
Top Co-Authors

Avatar

Alberto Ayala

California Department of Fish and Wildlife

View shared research outputs
Top Co-Authors

Avatar

Jian Xue

University of California

View shared research outputs
Top Co-Authors

Avatar

Liem Pham

University of California

View shared research outputs
Top Co-Authors

Avatar

Tao Huai

California Department of Fish and Wildlife

View shared research outputs
Researchain Logo
Decentralizing Knowledge