Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heemin Kang is active.

Publication


Featured researches published by Heemin Kang.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling

Yu-Ru V. Shih; Yongsung Hwang; Ameya Phadke; Heemin Kang; Nathaniel S. Hwang; Eduardo J. Caro; Steven Nguyen; Michael Siu; Emmanuel A. Theodorakis; Nathan C. Gianneschi; Kenneth S. Vecchio; Shu Chien; Oscar K. Lee; Shyni Varghese

Significance A mechanistic understanding of how calcium phosphate (CaP) minerals contribute to osteogenic commitment of stem cells and bone tissue formation is a necessary requirement for developing efficient CaP-based synthetic matrices to treat bone defects. This study unravels a previously unknown mechanism, phosphate-ATP-adenosine metabolic signaling, by which the CaP-rich mineral environment in bone tissues promotes osteogenic differentiation of human mesenchymal stem cells. In addition to a mechanical perspective on how biomaterials can influence stem cell differentiation through metabolic pathways, this discovery opens up new avenues for treating critical bone defects and bone metabolic disorders. Synthetic matrices emulating the physicochemical properties of tissue-specific ECMs are being developed at a rapid pace to regulate stem cell fate. Biomaterials containing calcium phosphate (CaP) moieties have been shown to support osteogenic differentiation of stem and progenitor cells and bone tissue formation. By using a mineralized synthetic matrix mimicking a CaP-rich bone microenvironment, we examine a molecular mechanism through which CaP minerals induce osteogenesis of human mesenchymal stem cells with an emphasis on phosphate metabolism. Our studies show that extracellular phosphate uptake through solute carrier family 20 (phosphate transporter), member 1 (SLC20a1) supports osteogenic differentiation of human mesenchymal stem cells via adenosine, an ATP metabolite, which acts as an autocrine/paracrine signaling molecule through A2b adenosine receptor. Perturbation of SLC20a1 abrogates osteogenic differentiation by decreasing intramitochondrial phosphate and ATP synthesis. Collectively, this study offers the demonstration of a previously unknown mechanism for the beneficial role of CaP biomaterials in bone repair and the role of phosphate ions in bone physiology and regeneration. These findings also begin to shed light on the role of ATP metabolism in bone homeostasis, which may be exploited to treat bone metabolic diseases.


Acta Biomaterialia | 2014

Mineralized gelatin methacrylate-based matrices induce osteogenic differentiation of human induced pluripotent stem cells.

Heemin Kang; Yu-Ru V. Shih; Yongsung Hwang; Cai Wen; Vikram Rao; Timothy Seo; Shyni Varghese

Human induced pluripotent stem cells (hiPSC) are a promising cell source with pluripotency and self-renewal properties. Design of simple and robust biomaterials with an innate ability to induce lineage-specificity of hiPSC is desirable to realize their application in regenerative medicine. In this study, the potential of biomaterials containing calcium phosphate minerals to induce osteogenic differentiation of hiPSC was investigated. hiPSC cultured using mineralized gelatin methacrylate-based matrices underwent osteogenic differentiation ex vivo, in both two-dimensional and three-dimensional cultures, in growth medium devoid of any osteogenic-inducing chemical components or growth factors. The findings that osteogenic differentiation of hiPSC can be achieved through biomaterial-based cues alone present new avenues for personalized regenerative medicine. Such biomaterials that could not only act as structural scaffolds, but could also provide tissue-specific functions such as directing stem cell differentiation commitment, have great potential in bone tissue engineering.


Journal of Materials Chemistry B | 2014

Biomineralized matrix-assisted osteogenic differentiation of human embryonic stem cells.

Heemin Kang; Cai Wen; Yongsung Hwang; Yu-Ru V. Shih; Mrityunjoy Kar; Sung Wook Seo; Shyni Varghese

The physical and chemical properties of a matrix play an important role in determining various cellular behaviors, including lineage specificity. We demonstrate that the differentiation commitment of human embryonic stem cells (hESCs), both in vitro and in vivo, can be solely achieved through synthetic biomaterials. hESCs were cultured using mineralized synthetic matrices mimicking a calcium phosphate (CaP)-rich bone environment differentiated into osteoblasts in the absence of any osteogenic inducing supplements. When implanted in vivo, these hESC-laden mineralized matrices contributed to ectopic bone tissue formation. In contrast, cells within the corresponding non-mineralized matrices underwent either osteogenic or adipogenic fate depending upon the local cues present in the microenvironment. To our knowledge, this is the first demonstration where synthetic matrices are shown to induce terminal cell fate specification of hESCs exclusively by biomaterial-based cues both in vitro and in vivo. Technologies that utilize tissue specific cell-matrix interactions to control stem cell fate could be a powerful tool in regenerative medicine. Such approaches can be used as a tool to advance our basic understanding and assess the translational potential of stem cells.


Biomacromolecules | 2015

Biomineralized matrices dominate soluble cues to direct osteogenic differentiation of human mesenchymal stem cells through adenosine signaling.

Heemin Kang; Yu-Ru V. Shih; Shyni Varghese

Stem cell differentiation is determined by a repertoire of signals from its microenvironment, which includes the extracellular matrix (ECM) and soluble cues. The ability of mesenchymal stem cells (MSCs), a common precursor for the skeletal system, to differentiate into osteoblasts and adipocytes in response to their local cues plays an important role in skeletal tissue regeneration and homeostasis. In this study, we investigated whether a bone-specific calcium phosphate (CaP) mineral environment could induce osteogenic differentiation of human MSCs, while inhibiting their adipogenic differentiation, in the presence of adipogenic-inducing medium. We also examined the mechanism through which the mineralized matrix suppresses adipogenesis of hMSCs to promote their osteogenic differentiation. Our results show that hMSCs cultured on mineralized matrices underwent osteogenic differentiation despite being cultured in the presence of adipogenic medium, which indicates the dominance of matrix-based cues of the mineralized matrix in directing osteogenic commitment of stem cells. Furthermore, the mineralized matrix-driven attenuation of adipogenesis was reversed with the inhibition of A2b adenosine receptor (A2bR), implicating a role of adenosine signaling in mineralized environment-mediated inhibition of adipogenesis. Such synthetic matrices with an intrinsic ability to direct differentiation of multipotent adult stem cells toward a targeted phenotype while inhibiting their differentiation into other lineages not only will be a powerful tool in delineating the role of complex microenvironmental cues on stem cell commitment but also will contribute to functional tissue engineering and their translational applications.


Science Advances | 2016

Small molecule–driven direct conversion of human pluripotent stem cells into functional osteoblasts

Heemin Kang; Yu-Ru V. Shih; Manando Nakasaki; Harsha Kabra; Shyni Varghese

Extracellular adenosine–driven osteogenic differentiation of stem cells. The abilities of human pluripotent stem cells (hPSCs) to proliferate without phenotypic alteration and to differentiate into tissue-specific progeny make them a promising cell source for regenerative medicine and development of physiologically relevant in vitro platforms. Despite this potential, efficient conversion of hPSCs into tissue-specific cells still remains a challenge. Herein, we report direct conversion of hPSCs into functional osteoblasts through the use of adenosine, a naturally occurring nucleoside in the human body. The hPSCs treated with adenosine not only expressed the molecular signatures of osteoblasts but also produced calcified bone matrix. Our findings show that the adenosine-mediated osteogenesis of hPSCs involved the adenosine A2bR. When implanted in vivo, using macroporous synthetic matrices, the human induced pluripotent stem cell (hiPSC)–derived donor cells participated in the repair of critical-sized bone defects through the formation of neobone tissue without teratoma formation. The newly formed bone tissues exhibited various attributes of the native tissue, including vascularization and bone resorption. To our knowledge, this is the first demonstration of adenosine-induced differentiation of hPSCs into functional osteoblasts and their subsequent use to regenerate bone tissues in vivo. This approach that uses a physiologically relevant single small molecule to generate hPSC-derived progenitor cells is highly appealing because of its simplicity, cost-effectiveness, scalability, and impact in cell manufacturing, all of which are decisive factors for successful translational applications of hPSCs.


Proceedings of the National Academy of Sciences of the United States of America | 2017

In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism

Yu-Ru V. Shih; Heemin Kang; Vikram Rao; Yu-Jui Chiu; Seong Keun Kwon; Shyni Varghese

Significance Current bone marrow (BM) or hematopoietic stem cell (HSC) transplantations require recipient conditioning that is accompanied by significant adverse effects in patients. Here, we report engineering of bone tissues with a functional BM compartment in vivo by modular assembly of mineralized and nonmineralized macroporous structures. These engineered bone tissues support maintenance of donor hematopoietic cells, respond to an HSC mobilization agent, and yield higher mixed chimerism in circulation of nonirradiated recipient mice compared with that of intravenous transplantation. Such engineered bone tissues could potentially be used as ectopic BM surrogates to treat various nonmalignant BM diseases and as a tool to study hematopoiesis, donor–host cell dynamics, tumor tropism, and hematopoietic cell transplantation. Synthetic biomimetic matrices with osteoconductivity and osteoinductivity have been developed to regenerate bone tissues. However, whether such systems harbor donor marrow in vivo and support mixed chimerism remains unknown. We devised a strategy to engineer bone tissues with a functional bone marrow (BM) compartment in vivo by using a synthetic biomaterial with spatially differing cues. Specifically, we have developed a synthetic matrix recapitulating the dual-compartment structures by modular assembly of mineralized and nonmineralized macroporous structures. Our results show that these matrices incorporated with BM cells or BM flush transplanted into recipient mice matured into functional bone displaying the cardinal features of both skeletal and hematopoietic compartments similar to native bone tissue. The hematopoietic function of bone tissues was demonstrated by its support for a higher percentage of mixed chimerism compared with i.v. injection and donor hematopoietic cell mobilization in the circulation of nonirradiated recipients. Furthermore, hematopoietic cells sorted from the engineered bone tissues reconstituted the hematopoietic system when transplanted into lethally irradiated secondary recipients. Such engineered bone tissues could potentially be used as ectopic BM surrogates for treatment of nonmalignant BM diseases and as a tool to study hematopoiesis, donor–host cell dynamics, tumor tropism, and hematopoietic cell transplantation.


Acta Biomaterialia | 2015

Synthetic bone mimetic matrix-mediated in situ bone tissue formation through host cell recruitment.

Yu-Ru V. Shih; Ameya Phadke; Tomonori Yamaguchi; Heemin Kang; Nozomu Inoue; Koichi Masuda; Shyni Varghese

Advances in tissue engineering have offered new opportunities to restore anatomically and functionally compromised tissues. Although traditional tissue engineering approaches that utilize biomaterials and cells to create tissue constructs for implantation or biomaterials as a scaffold to deliver cells are promising, strategies that can activate endogenous cells to promote tissue repair are more clinically attractive. Here, we demonstrate that an engineered injectable matrix mimicking a calcium phosphate (CaP)-rich bone-specific microenvironment can recruit endogenous cells to form bone tissues in vivo. Comparison of matrix alone with that of bone marrow-soaked or bFGF-soaked matrix demonstrates similar extent of neo-bone formation and bridging of decorticated transverse processes in a posterolateral lumbar fusion rat model. Synthetic biomaterials that stimulate endogenous cells without the need for biologics to assist tissue repair could circumvent limitations associated with conventional tissue engineering approaches, including ex vivo cell processing and laborious efforts, thereby accelerating the translational aspects of regenerative medicine.


Frontiers in Bioengineering and Biotechnology | 2015

Adenosine Signaling Mediates Osteogenic Differentiation of Human Embryonic Stem Cells on Mineralized Matrices

Vikram Rao; Yu-Ru V. Shih; Heemin Kang; Harsha Kabra; Shyni Varghese

Human embryonic stem cells (hESCs) are attractive cell sources for tissue engineering and regenerative medicine due to their self-renewal and differentiation ability. Design of biomaterials with an intrinsic ability that promotes hESC differentiation to the targeted cell type boasts significant advantages for tissue regeneration. We have previously developed biomineralized calcium phosphate (CaP) matrices that inherently direct osteogenic differentiation of hESCs without the need of osteogenic-inducing chemicals or growth factors. Here, we show that CaP matrix-driven osteogenic differentiation of hESCs occurs through A2b adenosine receptor (A2bR). The inhibition of the receptor with an A2bR-specific antagonist attenuated mineralized matrix-mediated osteogenic differentiation of hESCs. In addition, when cultured on matrices in an environment deficient of CaP minerals, exogenous adenosine promoted osteogenic differentiation of hESCs, but was attenuated by the inhibition of A2bR. Such synthetic matrices that intrinsically support osteogenic commitment of hESCs are not only beneficial for bone tissue engineering but can also be used as a platform to study the effect of the physical and chemical cues to the extracellular milieu on stem cell commitment. Insights into the cell signaling during matrix-induced differentiation of stem cells will also help define the key processes and enable discovery of new targets that promote differentiation of pluripotent stem cells for bone tissue engineering.


Current protocols in stem cell biology | 2018

Direct Conversion of Human Pluripotent Stem Cells to Osteoblasts With a Small Molecule

Heemin Kang; Yu-Ru V. Shih; Shyni Varghese

Human pluripotent stem cells (hPSCs), which exhibit unlimited self-renewal ability and can differentiate into all cell types in the human body, are a promising cell source for cell-based therapies and regenerative medicine. Small molecules hold great potential in the derivation of tissue-specific cells from hPSCs owing to their cost-effectiveness and scalability. Here, we describe a protocol for deriving osteoblasts from hPSCs by using a single, natural small molecule: adenosine. This simple and effective experimental protocol allows one to obtain large numbers of osteoblasts or osteoprogenitor cells, with the ability to form functional bone tissues, from hPSCs, including human embryonic stem cells and induced pluripotent stem cells. This protocol could potentially enable studies of tissue regeneration and skeletal diseases.


Acta Biomaterialia | 2018

Functionally graded multilayer scaffolds for in vivo osteochondral tissue engineering

Heemin Kang; Yuze Zeng; Shyni Varghese

Osteochondral tissue repair remains a significant challenge in orthopedic surgery. Tissue engineering of osteochondral tissue has transpired as a potential therapeutic solution as it can effectively regenerate bone, cartilage, and the bone-cartilage interface. While advancements in scaffold fabrication and stem cell engineering have made significant progress towards the engineering of composite tissues, such as osteochondral tissue, new approaches are required to improve the outcome of such strategies. Herein, we discuss the use of a single-unit trilayer scaffold with depth-varying pore architecture and mineral environment to engineer osteochondral tissues in vivo. The trilayer scaffold includes a biomineralized bottom layer mimicking the calcium phosphate (CaP)-rich bone microenvironment, a cryogel middle layer with anisotropic pore architecture, and a hydrogel top layer. The mineralized bottom layer was designed to support bone formation, while the macroporous middle layer and hydrogel top layer were designed to support cartilage tissue formation. The bottom layer was kept acellular and the top two layers were loaded with cells prior to implantation. When implanted in vivo, these trilayer scaffolds resulted in the formation of osteochondral tissue with a lubricin-rich cartilage surface. The osteochondral tissue formation was a result of continuous differentiation of the transplanted cells to form cartilage tissue and recruitment of endogenous cells through the mineralized bottom layer to form bone tissue. Our results suggest that integrating exogenous cell-based cartilage tissue engineering along with scaffold-driven in situ bone tissue engineering could be a powerful approach to engineer analogs of osteochondral tissue. In addition to offering new therapeutic opportunities, such approaches and systems could also advance our fundamental understanding of osteochondral tissue regeneration and repair. STATEMENT OF SIGNIFICANCE In this work, we describe the use of a single-unit trilayer scaffold with depth-varying pore architecture and mineral environment to engineer osteochondral tissues in vivo. The trilayer scaffold was designed to support continued differentiation of the donor cells to form cartilage tissue while supporting bone formation through recruitment of endogenous cells. When implanted in vivo, these trilayer scaffolds partially loaded with cells resulted in the formation of osteochondral tissue with a lubricin-rich cartilage surface. Approaches such as the one presented here that integrates ex vivo tissue engineering along with endogenous cell-mediated tissue engineering can have a significant impact in tissue engineering composite tissues with diverse cell populations and functionality.

Collaboration


Dive into the Heemin Kang's collaboration.

Top Co-Authors

Avatar

Shyni Varghese

University of California

View shared research outputs
Top Co-Authors

Avatar

Yu-Ru V. Shih

University of California

View shared research outputs
Top Co-Authors

Avatar

Yongsung Hwang

University of California

View shared research outputs
Top Co-Authors

Avatar

Vikram Rao

University of California

View shared research outputs
Top Co-Authors

Avatar

Cai Wen

Southeast University

View shared research outputs
Top Co-Authors

Avatar

Ameya Phadke

University of California

View shared research outputs
Top Co-Authors

Avatar

Harsha Kabra

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge