Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yu-Ru V. Shih is active.

Publication


Featured researches published by Yu-Ru V. Shih.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling

Yu-Ru V. Shih; Yongsung Hwang; Ameya Phadke; Heemin Kang; Nathaniel S. Hwang; Eduardo J. Caro; Steven Nguyen; Michael Siu; Emmanuel A. Theodorakis; Nathan C. Gianneschi; Kenneth S. Vecchio; Shu Chien; Oscar K. Lee; Shyni Varghese

Significance A mechanistic understanding of how calcium phosphate (CaP) minerals contribute to osteogenic commitment of stem cells and bone tissue formation is a necessary requirement for developing efficient CaP-based synthetic matrices to treat bone defects. This study unravels a previously unknown mechanism, phosphate-ATP-adenosine metabolic signaling, by which the CaP-rich mineral environment in bone tissues promotes osteogenic differentiation of human mesenchymal stem cells. In addition to a mechanical perspective on how biomaterials can influence stem cell differentiation through metabolic pathways, this discovery opens up new avenues for treating critical bone defects and bone metabolic disorders. Synthetic matrices emulating the physicochemical properties of tissue-specific ECMs are being developed at a rapid pace to regulate stem cell fate. Biomaterials containing calcium phosphate (CaP) moieties have been shown to support osteogenic differentiation of stem and progenitor cells and bone tissue formation. By using a mineralized synthetic matrix mimicking a CaP-rich bone microenvironment, we examine a molecular mechanism through which CaP minerals induce osteogenesis of human mesenchymal stem cells with an emphasis on phosphate metabolism. Our studies show that extracellular phosphate uptake through solute carrier family 20 (phosphate transporter), member 1 (SLC20a1) supports osteogenic differentiation of human mesenchymal stem cells via adenosine, an ATP metabolite, which acts as an autocrine/paracrine signaling molecule through A2b adenosine receptor. Perturbation of SLC20a1 abrogates osteogenic differentiation by decreasing intramitochondrial phosphate and ATP synthesis. Collectively, this study offers the demonstration of a previously unknown mechanism for the beneficial role of CaP biomaterials in bone repair and the role of phosphate ions in bone physiology and regeneration. These findings also begin to shed light on the role of ATP metabolism in bone homeostasis, which may be exploited to treat bone metabolic diseases.


Acta Biomaterialia | 2014

Mineralized gelatin methacrylate-based matrices induce osteogenic differentiation of human induced pluripotent stem cells.

Heemin Kang; Yu-Ru V. Shih; Yongsung Hwang; Cai Wen; Vikram Rao; Timothy Seo; Shyni Varghese

Human induced pluripotent stem cells (hiPSC) are a promising cell source with pluripotency and self-renewal properties. Design of simple and robust biomaterials with an innate ability to induce lineage-specificity of hiPSC is desirable to realize their application in regenerative medicine. In this study, the potential of biomaterials containing calcium phosphate minerals to induce osteogenic differentiation of hiPSC was investigated. hiPSC cultured using mineralized gelatin methacrylate-based matrices underwent osteogenic differentiation ex vivo, in both two-dimensional and three-dimensional cultures, in growth medium devoid of any osteogenic-inducing chemical components or growth factors. The findings that osteogenic differentiation of hiPSC can be achieved through biomaterial-based cues alone present new avenues for personalized regenerative medicine. Such biomaterials that could not only act as structural scaffolds, but could also provide tissue-specific functions such as directing stem cell differentiation commitment, have great potential in bone tissue engineering.


Macromolecular Bioscience | 2012

Mineralized synthetic matrices as an instructive microenvironment for osteogenic differentiation of human mesenchymal stem cells.

Ameya Phadke; Yu-Ru V. Shih; Shyni Varghese

The effect of substrate-mediated signals on osteogenic differentiation of hMSCs is studied using a synthetic bone-like material comprising both organic and inorganic components that supports adhesion, spreading, and proliferation of hMSCs. hMSCs undergo osteogenic differentiation even in the absence of osteogenesis-inducing supplements. They exhibit higher expressions of Runx2, BSP, and OCN compared to their matrix-rigidity-matched, non-mineralized hydrogel counterparts. The mineralized-hydrogel-assisted osteogenic differentiation of hMSCs could be attributed to their exposure to high local concentrations of calcium and phosphate ions in conjunction with chemical and topological cues arising from the hydrogel-bound calcium phosphate mineral layer.


Journal of Materials Chemistry B | 2014

Biomineralized matrix-assisted osteogenic differentiation of human embryonic stem cells.

Heemin Kang; Cai Wen; Yongsung Hwang; Yu-Ru V. Shih; Mrityunjoy Kar; Sung Wook Seo; Shyni Varghese

The physical and chemical properties of a matrix play an important role in determining various cellular behaviors, including lineage specificity. We demonstrate that the differentiation commitment of human embryonic stem cells (hESCs), both in vitro and in vivo, can be solely achieved through synthetic biomaterials. hESCs were cultured using mineralized synthetic matrices mimicking a calcium phosphate (CaP)-rich bone environment differentiated into osteoblasts in the absence of any osteogenic inducing supplements. When implanted in vivo, these hESC-laden mineralized matrices contributed to ectopic bone tissue formation. In contrast, cells within the corresponding non-mineralized matrices underwent either osteogenic or adipogenic fate depending upon the local cues present in the microenvironment. To our knowledge, this is the first demonstration where synthetic matrices are shown to induce terminal cell fate specification of hESCs exclusively by biomaterial-based cues both in vitro and in vivo. Technologies that utilize tissue specific cell-matrix interactions to control stem cell fate could be a powerful tool in regenerative medicine. Such approaches can be used as a tool to advance our basic understanding and assess the translational potential of stem cells.


Biomacromolecules | 2015

Biomineralized matrices dominate soluble cues to direct osteogenic differentiation of human mesenchymal stem cells through adenosine signaling.

Heemin Kang; Yu-Ru V. Shih; Shyni Varghese

Stem cell differentiation is determined by a repertoire of signals from its microenvironment, which includes the extracellular matrix (ECM) and soluble cues. The ability of mesenchymal stem cells (MSCs), a common precursor for the skeletal system, to differentiate into osteoblasts and adipocytes in response to their local cues plays an important role in skeletal tissue regeneration and homeostasis. In this study, we investigated whether a bone-specific calcium phosphate (CaP) mineral environment could induce osteogenic differentiation of human MSCs, while inhibiting their adipogenic differentiation, in the presence of adipogenic-inducing medium. We also examined the mechanism through which the mineralized matrix suppresses adipogenesis of hMSCs to promote their osteogenic differentiation. Our results show that hMSCs cultured on mineralized matrices underwent osteogenic differentiation despite being cultured in the presence of adipogenic medium, which indicates the dominance of matrix-based cues of the mineralized matrix in directing osteogenic commitment of stem cells. Furthermore, the mineralized matrix-driven attenuation of adipogenesis was reversed with the inhibition of A2b adenosine receptor (A2bR), implicating a role of adenosine signaling in mineralized environment-mediated inhibition of adipogenesis. Such synthetic matrices with an intrinsic ability to direct differentiation of multipotent adult stem cells toward a targeted phenotype while inhibiting their differentiation into other lineages not only will be a powerful tool in delineating the role of complex microenvironmental cues on stem cell commitment but also will contribute to functional tissue engineering and their translational applications.


Science Advances | 2016

Small molecule–driven direct conversion of human pluripotent stem cells into functional osteoblasts

Heemin Kang; Yu-Ru V. Shih; Manando Nakasaki; Harsha Kabra; Shyni Varghese

Extracellular adenosine–driven osteogenic differentiation of stem cells. The abilities of human pluripotent stem cells (hPSCs) to proliferate without phenotypic alteration and to differentiate into tissue-specific progeny make them a promising cell source for regenerative medicine and development of physiologically relevant in vitro platforms. Despite this potential, efficient conversion of hPSCs into tissue-specific cells still remains a challenge. Herein, we report direct conversion of hPSCs into functional osteoblasts through the use of adenosine, a naturally occurring nucleoside in the human body. The hPSCs treated with adenosine not only expressed the molecular signatures of osteoblasts but also produced calcified bone matrix. Our findings show that the adenosine-mediated osteogenesis of hPSCs involved the adenosine A2bR. When implanted in vivo, using macroporous synthetic matrices, the human induced pluripotent stem cell (hiPSC)–derived donor cells participated in the repair of critical-sized bone defects through the formation of neobone tissue without teratoma formation. The newly formed bone tissues exhibited various attributes of the native tissue, including vascularization and bone resorption. To our knowledge, this is the first demonstration of adenosine-induced differentiation of hPSCs into functional osteoblasts and their subsequent use to regenerate bone tissues in vivo. This approach that uses a physiologically relevant single small molecule to generate hPSC-derived progenitor cells is highly appealing because of its simplicity, cost-effectiveness, scalability, and impact in cell manufacturing, all of which are decisive factors for successful translational applications of hPSCs.


Proceedings of the National Academy of Sciences of the United States of America | 2017

In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism

Yu-Ru V. Shih; Heemin Kang; Vikram Rao; Yu-Jui Chiu; Seong Keun Kwon; Shyni Varghese

Significance Current bone marrow (BM) or hematopoietic stem cell (HSC) transplantations require recipient conditioning that is accompanied by significant adverse effects in patients. Here, we report engineering of bone tissues with a functional BM compartment in vivo by modular assembly of mineralized and nonmineralized macroporous structures. These engineered bone tissues support maintenance of donor hematopoietic cells, respond to an HSC mobilization agent, and yield higher mixed chimerism in circulation of nonirradiated recipient mice compared with that of intravenous transplantation. Such engineered bone tissues could potentially be used as ectopic BM surrogates to treat various nonmalignant BM diseases and as a tool to study hematopoiesis, donor–host cell dynamics, tumor tropism, and hematopoietic cell transplantation. Synthetic biomimetic matrices with osteoconductivity and osteoinductivity have been developed to regenerate bone tissues. However, whether such systems harbor donor marrow in vivo and support mixed chimerism remains unknown. We devised a strategy to engineer bone tissues with a functional bone marrow (BM) compartment in vivo by using a synthetic biomaterial with spatially differing cues. Specifically, we have developed a synthetic matrix recapitulating the dual-compartment structures by modular assembly of mineralized and nonmineralized macroporous structures. Our results show that these matrices incorporated with BM cells or BM flush transplanted into recipient mice matured into functional bone displaying the cardinal features of both skeletal and hematopoietic compartments similar to native bone tissue. The hematopoietic function of bone tissues was demonstrated by its support for a higher percentage of mixed chimerism compared with i.v. injection and donor hematopoietic cell mobilization in the circulation of nonirradiated recipients. Furthermore, hematopoietic cells sorted from the engineered bone tissues reconstituted the hematopoietic system when transplanted into lethally irradiated secondary recipients. Such engineered bone tissues could potentially be used as ectopic BM surrogates for treatment of nonmalignant BM diseases and as a tool to study hematopoiesis, donor–host cell dynamics, tumor tropism, and hematopoietic cell transplantation.


Journal of Proteome Research | 2012

Phosphoproteomic analysis of human mesenchymal stromal cells during osteogenic differentiation.

Ting Lo; Chia-Feng Tsai; Yu-Ru V. Shih; Yi-Ting Wang; Sheng-Chieh Lu; Ting-Yi Sung; Wen-Lian Hsu; Yu-Ju Chen; Oscar K. Lee

Human mesenchymal stromal cells (hMSCs) are promising candidates for cell therapy and tissue regeneration. Knowledge of the molecular mechanisms governing hMSC commitment into osteoblasts is critical to the development of therapeutic applications for human bone diseases. Because protein phosphorylation plays a critical role in signaling transduction network, the purpose of this study is to elucidate the phosphoproteomic changes in hMSCs during early osteogenic lineage commitment. hMSCs cultured in osteogenic induction medium for 0, 1, 3, and 7 days were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Surprisingly, we observed a dramatic loss of protein phosphorylation level after 1 day of osteogenic induction. Pathways analysis of these reduced phosphoproteins exhibited a high correlation with cell proliferation and protein synthesis pathways. During osteogenic differentiation, differentially expressed phosphoproteins demonstrated the dynamic alterations in cytoskeleton at the early stages of differentiation. The fidelity of our quantitative phosphoproteomic analyses were further confirmed by Western blot analyses, and the changes from protein expression or its phosphorylation level were distinguished. In addition, several ion channels and transcription factors with differentially expressed phosphorylation sites during osteogenic differentiation were identified and may serve as potentially unexplored transcriptional regulators of the osteogenic phenotype of hMSCs. Taken together, our results have demonstrated the dynamic changes in phosphoproteomic profiles of hMSCs during osteogenic differentiation and unraveled potential candidates mediating the osteogenic commitment of hMSCs. The findings in this study may also shed light on the development of new therapeutic targets for metabolic bone diseases such as osteoporosis and osteomalacia.


Small | 2016

A Single-Cell Assay for Time Lapse Studies of Exosome Secretion and Cell Behaviors

Yu-Jui Chiu; Wei Cai; Yu-Ru V. Shih; Ian Lian; Yu-Hwa Lo

To understand the inhomogeneity of cells in biological systems, there is a growing demand on the capability of characterizing the properties of individual single cells. Since single-cell studies require continuous monitoring of the cell behaviors, an effective single-cell assay that can support time lapsed studies in a high throughput manner is desired. Most currently available single-cell technologies cannot provide proper environments to sustain cell growth and, proliferation of single cells and convenient, noninvasive tests of single-cell behaviors from molecular markers. Here, a highly versatile single-cell assay is presented that can accommodate different cellular types, enable easy and efficient single-cell loading and culturing, and be suitable for the study of effects of in vitro environmental factors in combination with drug screening. One salient feature of the assay is the noninvasive collection and surveying of single-cell secretions at different time points, producing unprecedented insight of single-cell behaviors based on the biomarker signals from individual cells under given perturbations. Above all, the acquired information is quantitative, for example, measured by the number of exosomes each single-cell secretes for a given time period. Therefore, our single-cell assay provides a convenient, low-cost, and enabling tool for quantitative, time lapsed studies of single-cell properties.


Acta Biomaterialia | 2015

Synthetic bone mimetic matrix-mediated in situ bone tissue formation through host cell recruitment.

Yu-Ru V. Shih; Ameya Phadke; Tomonori Yamaguchi; Heemin Kang; Nozomu Inoue; Koichi Masuda; Shyni Varghese

Advances in tissue engineering have offered new opportunities to restore anatomically and functionally compromised tissues. Although traditional tissue engineering approaches that utilize biomaterials and cells to create tissue constructs for implantation or biomaterials as a scaffold to deliver cells are promising, strategies that can activate endogenous cells to promote tissue repair are more clinically attractive. Here, we demonstrate that an engineered injectable matrix mimicking a calcium phosphate (CaP)-rich bone-specific microenvironment can recruit endogenous cells to form bone tissues in vivo. Comparison of matrix alone with that of bone marrow-soaked or bFGF-soaked matrix demonstrates similar extent of neo-bone formation and bridging of decorticated transverse processes in a posterolateral lumbar fusion rat model. Synthetic biomaterials that stimulate endogenous cells without the need for biologics to assist tissue repair could circumvent limitations associated with conventional tissue engineering approaches, including ex vivo cell processing and laborious efforts, thereby accelerating the translational aspects of regenerative medicine.

Collaboration


Dive into the Yu-Ru V. Shih's collaboration.

Top Co-Authors

Avatar

Shyni Varghese

University of California

View shared research outputs
Top Co-Authors

Avatar

Heemin Kang

University of California

View shared research outputs
Top Co-Authors

Avatar

Yongsung Hwang

University of California

View shared research outputs
Top Co-Authors

Avatar

Ameya Phadke

University of California

View shared research outputs
Top Co-Authors

Avatar

Vikram Rao

University of California

View shared research outputs
Top Co-Authors

Avatar

Oscar K. Lee

Taipei Veterans General Hospital

View shared research outputs
Top Co-Authors

Avatar

Cai Wen

Southeast University

View shared research outputs
Top Co-Authors

Avatar

Harsha Kabra

University of California

View shared research outputs
Top Co-Authors

Avatar

Yu-Jui Chiu

University of California

View shared research outputs
Top Co-Authors

Avatar

Ana M. Moreno

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge