Heidi C. O'Neill
University of Colorado Boulder
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heidi C. O'Neill.
Free Radical Biology and Medicine | 2010
Heidi C. O'Neill; Carl W. White; Livia A. Veress; Tara B. Hendry-Hofer; Joan E. Loader; Elysia Min; Jie Huang; Raymond C. Rancourt; Brian J. Day
Sulfur mustard (bis-2-(chloroethyl) sulfide; SM) is a highly reactive vesicating and alkylating chemical warfare agent. A SM analog, 2-chloroethyl ethyl sulfide (CEES), has been utilized to elucidate mechanisms of toxicity and as a screen for therapeutics. Previous studies with SM and CEES have demonstrated a role for oxidative stress as well as decreased injury with antioxidant treatment. We tested whether posttreatment with the metalloporphyrin catalytic antioxidant AEOL 10150 would improve outcome in CEES-induced lung injury. Anesthetized rats inhaled 5% CEES for 15 min via a nose-only inhalation system. At 1 and 9 h after CEES exposure, rats were given AEOL 10150 (5 mg/kg, sc). At 18 h post-CEES exposure BALF lactate dehydrogenase activity, protein, IgM, red blood cells, and neutrophils were elevated but were decreased by AEOL 10150 treatment. Lung myeloperoxidase activity was increased after CEES inhalation and was ameliorated by AEOL 10150. The lung oxidative stress markers 8-OHdG and 4-HNE were elevated after CEES exposure and significantly decreased by AEOL 10150 treatment. These findings demonstrate that CEES inhalation increased lung injury, inflammation, and oxidative stress, and AEOL 10150 was an effective rescue agent. Further investigation utilizing catalytic antioxidants as treatment for SM inhalation injury is warranted.
The Journal of Neuroscience | 2012
Elisha D. W. Mackey; Staci E. Engle; Mi Ran Kim; Heidi C. O'Neill; Charles R. Wageman; Natalie E. Patzlaff; Ying Wang; Sharon R. Grady; J. Michael McIntosh; Michael J. Marks; Henry A. Lester; Ryan M. Drenan
Nicotinic acetylcholine receptors (nAChRs) containing α6 subunits are expressed in only a few brain areas, including midbrain dopamine (DA) neurons, noradrenergic neurons of the locus ceruleus, and retinal ganglion cells. To better understand the regional and subcellular expression pattern of α6-containing nAChRs, we created and studied transgenic mice expressing a variant α6 subunit with green fluorescent protein (GFP) fused in-frame in the M3-M4 intracellular loop. In α6-GFP transgenic mice, α6-dependent synaptosomal DA release and radioligand binding experiments confirmed correct expression and function in vivo. In addition to strong α6* nAChR expression in glutamatergic retinal axons, which terminate in superficial superior colliculus (sSC), we also found α6 subunit expression in a subset of GABAergic cell bodies in this brain area. In patch-clamp recordings from sSC neurons in brain slices from mice expressing hypersensitive α6* nAChRs, we confirmed functional, postsynaptic α6* nAChR expression. Further, sSC GABAergic neurons expressing α6* nAChRs exhibit a tonic conductance mediated by standing activation of hypersensitive α6* nAChRs by ACh. α6* nAChRs also appear in a subpopulation of SC neurons in output layers. Finally, selective activation of α6* nAChRs in vivo induced sSC neuronal activation as measured with c-Fos expression. Together, these results demonstrate that α6* nAChRs are uniquely situated to mediate cholinergic modulation of glutamate and GABA release in SC. The SC has emerged as a potential key brain area responsible for transmitting short-latency salience signals to thalamus and midbrain DA neurons, and these results suggest that α6* nAChRs may be important for nicotinic cholinergic sensitization of this pathway.
American Journal of Respiratory and Critical Care Medicine | 2010
Livia A. Veress; Heidi C. O'Neill; Tara B. Hendry-Hofer; Joan E. Loader; Raymond C. Rancourt; Carl W. White
RATIONALE Sulfur mustard (SM) is a frequently used chemical warfare agent, even in modern history. SM inhalation causes significant respiratory tract injury, with early complications due to airway obstructive bronchial casts, akin to those seen after smoke inhalation and in single-ventricle physiology. This process with SM is poorly understood because animal models are unavailable. OBJECTIVES To develop a rat inhalation model for airway obstruction with the SM analog 2-chloroethyl ethyl sulfide (CEES), and to investigate the pathogenesis of bronchial cast formation. METHODS Adult rats were exposed to 0, 5, or 7.5% CEES in ethanol via nose-only aerosol inhalation (15 min). Airway microdissection and confocal microscopy were used to assess cast formation (4 and 18 h after exposure). Bronchoalveolar lavage fluid (BALF) retrieval and intravascular dye injection were done to evaluate vascular permeability. MEASUREMENTS AND MAIN RESULTS Bronchial casts, composed of abundant fibrin and lacking mucus, occluded dependent lobar bronchi within 18 hours of CEES exposure. BALF contained elevated concentrations of IgM, protein, and fibrin. Accumulation of fibrin-rich fluid in peribronchovascular regions (4 h) preceded cast formation. Monastral blue dye leakage identified bronchial vessels as the site of leakage. CONCLUSIONS After CEES inhalation, increased permeability from damaged bronchial vessels underlying damaged airway epithelium leads to the appearance of plasma proteins in both peribronchovascular regions and BALF. The subsequent formation of fibrin-rich casts within the airways then leads to airways obstruction, causing significant morbidity and mortality acutely after exposure.
Nature Medicine | 2017
Fani Koukouli; Marie Rooy; Dimitrios Tziotis; Kurt A. Sailor; Heidi C. O'Neill; Josien Levenga; Mirko Witte; Michael Nilges; Jean-Pierre Changeux; Charles A. Hoeffer; Jerry A. Stitzel; Boris Gutkin; David A. DiGregorio; Uwe Maskos
The prefrontal cortex (PFC) underlies higher cognitive processes that are modulated by nicotinic acetylcholine receptor (nAChR) activation by cholinergic inputs. PFC spontaneous default activity is altered in neuropsychiatric disorders, including schizophrenia—a disorder that can be accompanied by heavy smoking. Recently, genome-wide association studies (GWAS) identified single-nucleotide polymorphisms (SNPs) in the human CHRNA5 gene, encoding the α5 nAChR subunit, that increase the risks for both smoking and schizophrenia. Mice with altered nAChR gene function exhibit PFC-dependent behavioral deficits, but it is unknown how the corresponding human polymorphisms alter the cellular and circuit mechanisms underlying behavior. Here we show that mice expressing a human α5 SNP exhibit neurocognitive behavioral deficits in social interaction and sensorimotor gating tasks. Two-photon calcium imaging in awake mouse models showed that nicotine can differentially influence PFC pyramidal cell activity by nAChR modulation of layer II/III hierarchical inhibitory circuits. In α5-SNP-expressing and α5-knockout mice, lower activity of vasoactive intestinal polypeptide (VIP) interneurons resulted in an increased somatostatin (SOM) interneuron inhibitory drive over layer II/III pyramidal neurons. The decreased activity observed in α5-SNP-expressing mice resembles the hypofrontality observed in patients with psychiatric disorders, including schizophrenia and addiction. Chronic nicotine administration reversed this hypofrontality, suggesting that administration of nicotine may represent a therapeutic strategy for the treatment of schizophrenia, and a physiological basis for the tendency of patients with schizophrenia to self-medicate by smoking.
Pharmacology, Biochemistry and Behavior | 2013
Heidi C. O'Neill; Duncan C. Laverty; Natalie E. Patzlaff; Bruce N. Cohen; Carlos Fonck; Sheri McKinney; J. Michael McIntosh; Jon Lindstrom; Henry A. Lester; Sharon R. Grady; Michael J. Marks
Several mutations in α4 or β2 nicotinic receptor subunits are linked to autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). One such missense mutation in the gene encoding the β2 neuronal nicotinic acetylcholine receptor (nAChR) subunit (CHRNB2) is a valine-to-leucine substitution in the second transmembrane domain at position 287 (β2VL). Previous studies indicated that the β2VL mutation in mice alters circadian rhythm consistent with sleep alterations observed in ADNFLE patients (Xu et al., 2011). The current study investigates changes in nicotinic receptor function and expression that may explain the behavioral phenotype of β2VL mice. No differences in β2 mRNA expression were found between wild-type (WT) and heterozygous (HT) or homozygous mutant (MT) mice. However, antibody and ligand binding indicated that the mutation resulted in a reduction in receptor protein. Functional consequences of the β2VL mutation were assessed biochemically using crude synaptosomes. A gene-dose dependent increase in sensitivity to activation by acetylcholine and decrease in maximal nAChR-mediated [(3)H]-dopamine release and (86)Rb efflux were observed. Maximal nAChR-mediated [(3)H]-GABA release in the cortex was also decreased in the MT, but maximal [(3)H]-GABA release was retained in the hippocampus. Behaviorally both HT and MT mice demonstrated increased sensitivity to nicotine-induced hypolocomotion and hypothermia. Furthermore, WT mice display only a tonic-clonic seizure (EEG recordable) 3 min after injection of a high dose of nicotine, while MT mice also display a dystonic arousal complex (non-EEG recordable) event 30s after nicotine injection. Data indicate decreases in maximal response for certain measures are larger than expected given the decrease in receptor expression.
Free Radical Biology and Medicine | 2009
Sally P. Stabler; Jeevan Sekhar; Robert H. Allen; Heidi C. O'Neill; Carl W. White
Lipoic acid is a disulfhydryl-containing compound used in clinical medicine and in experimental models as an antioxidant. We developed a stable isotope dilution capillary gas chromatography/mass spectrometry assay for lipoic acid. We assayed a panel of the metabolites of transmethylation and transsulfuration 30 min after injecting 100 mg/kg lipoic acid in a rat model. Lipoic acid values rose 1000-fold in serum and 10-fold in liver. A methylated metabolite of lipoic acid was also detected but not quantitated. Lipoic acid injection caused a massive increase in serum S-adenosylhomocysteine and marked depletion of liver S-adenosylmethionine. Serum total cysteine was depleted but liver cysteine and glutathione were maintained. Serum total homocysteine doubled, with increases also in cystathionine, N,N-dimethylglycine, and alpha-aminobutyric acid. In contrast, after injection of 2-mercaptoethane sulfonic acid, serum total cysteine and homocysteine were markedly depleted and there were no effects on serum S-adenosylmethionine or S-adenosylhomocysteine. We conclude that large doses of lipoic acid displace sulfhydryls from binding sites, resulting in depletion of serum cysteine, but also pose a methylation burden with severe depletion of liver S-adenosylmethionine and massive release of S-adenosylhomocysteine. These changes may have previously unrecognized deleterious effects that should be investigated in both human disease and experimental models.
Genes, Brain and Behavior | 2018
Heidi C. O'Neill; Charles R. Wageman; S. E. Sherman; Sharon R. Grady; Michael J. Marks; Jerry A. Stitzel
A single nucleotide polymorphism (SNP) in CHRNA5 (rs16969968, change from an aspartic acid [D] to asparagine [N] at position 398 of the human α5 nicotinic acetylcholine receptor subunit) has been associated with increased risk for nicotine dependence. Consequently, carriers of the risk variant may be at elevated risk for in utero nicotine exposure. To assess whether this gene‐environment interaction might impact nicotine intake in developmental nicotine‐exposed offspring, we utilized a mouse expressing this human SNP. D and N dams drank nicotine (100 μg/mL) in 0.2% saccharin water or 0.2% saccharin water alone (vehicle) as their sole source of fluid from 30 days prior to breeding until weaning of offspring. The nicotine (D Nic, N Nic) or vehicle (D Veh, N Veh) exposed offspring underwent a 2‐bottle choice test between postnatal ages of 30 to 46 days. N Nic offspring consumed the most nicotine at the highest concentration (400 μg/mL) compared with all other groups. In contrast, D Nic offspring drank the least amount of nicotine at all concentrations tested. Nicotine‐stimulated dopamine (DA) release measured from striatal synaptosomes was increased in D Nic offspring, while decreased in N Nic offspring relative to their genotype‐matched controls. These data suggest that the α5 variant influences the effect of developmental nicotine exposure on nicotine intake of exposed offspring. This gene‐environment interaction on striatal DA release may provide motivation for increased nicotine seeking in N Nic offspring and reduced consumption in D Nic offspring.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2007
Kathleen A. Stringer; Meghan Tobias; Heidi C. O'Neill; Christopher C. Franklin
American Journal of Respiratory Cell and Molecular Biology | 2011
Heidi C. O'Neill; David J. Orlicky; Tara B. Hendry-Hofer; Joan E. Loader; Brian J. Day; Carl W. White
Neuropharmacology | 2015
Michael J. Marks; Heidi C. O'Neill; Kelly M. Wynalda-Camozzi; Nick C. Ortiz; Emily E. Simmons; Caitlin A. Short; Christopher M. Butt; J. Michael McIntosh; Sharon R. Grady