Raymond C. Rancourt
University of Colorado Denver
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raymond C. Rancourt.
Free Radical Biology and Medicine | 2010
Heidi C. O'Neill; Carl W. White; Livia A. Veress; Tara B. Hendry-Hofer; Joan E. Loader; Elysia Min; Jie Huang; Raymond C. Rancourt; Brian J. Day
Sulfur mustard (bis-2-(chloroethyl) sulfide; SM) is a highly reactive vesicating and alkylating chemical warfare agent. A SM analog, 2-chloroethyl ethyl sulfide (CEES), has been utilized to elucidate mechanisms of toxicity and as a screen for therapeutics. Previous studies with SM and CEES have demonstrated a role for oxidative stress as well as decreased injury with antioxidant treatment. We tested whether posttreatment with the metalloporphyrin catalytic antioxidant AEOL 10150 would improve outcome in CEES-induced lung injury. Anesthetized rats inhaled 5% CEES for 15 min via a nose-only inhalation system. At 1 and 9 h after CEES exposure, rats were given AEOL 10150 (5 mg/kg, sc). At 18 h post-CEES exposure BALF lactate dehydrogenase activity, protein, IgM, red blood cells, and neutrophils were elevated but were decreased by AEOL 10150 treatment. Lung myeloperoxidase activity was increased after CEES inhalation and was ameliorated by AEOL 10150. The lung oxidative stress markers 8-OHdG and 4-HNE were elevated after CEES exposure and significantly decreased by AEOL 10150 treatment. These findings demonstrate that CEES inhalation increased lung injury, inflammation, and oxidative stress, and AEOL 10150 was an effective rescue agent. Further investigation utilizing catalytic antioxidants as treatment for SM inhalation injury is warranted.
American Journal of Respiratory and Critical Care Medicine | 2010
Livia A. Veress; Heidi C. O'Neill; Tara B. Hendry-Hofer; Joan E. Loader; Raymond C. Rancourt; Carl W. White
RATIONALE Sulfur mustard (SM) is a frequently used chemical warfare agent, even in modern history. SM inhalation causes significant respiratory tract injury, with early complications due to airway obstructive bronchial casts, akin to those seen after smoke inhalation and in single-ventricle physiology. This process with SM is poorly understood because animal models are unavailable. OBJECTIVES To develop a rat inhalation model for airway obstruction with the SM analog 2-chloroethyl ethyl sulfide (CEES), and to investigate the pathogenesis of bronchial cast formation. METHODS Adult rats were exposed to 0, 5, or 7.5% CEES in ethanol via nose-only aerosol inhalation (15 min). Airway microdissection and confocal microscopy were used to assess cast formation (4 and 18 h after exposure). Bronchoalveolar lavage fluid (BALF) retrieval and intravascular dye injection were done to evaluate vascular permeability. MEASUREMENTS AND MAIN RESULTS Bronchial casts, composed of abundant fibrin and lacking mucus, occluded dependent lobar bronchi within 18 hours of CEES exposure. BALF contained elevated concentrations of IgM, protein, and fibrin. Accumulation of fibrin-rich fluid in peribronchovascular regions (4 h) preceded cast formation. Monastral blue dye leakage identified bronchial vessels as the site of leakage. CONCLUSIONS After CEES inhalation, increased permeability from damaged bronchial vessels underlying damaged airway epithelium leads to the appearance of plasma proteins in both peribronchovascular regions and BALF. The subsequent formation of fibrin-rich casts within the airways then leads to airways obstruction, causing significant morbidity and mortality acutely after exposure.
Antioxidants & Redox Signaling | 2004
Mihalis I. Panayiotidis; Raymond C. Rancourt; Corrie B. Allen; Suzette R. Riddle; Barbara K. Schneider; Shama Ahmad; Carl W. White
The effect of hyperoxia on levels of DNA damage and global DNA methylation was examined in lung epithelial-like A549 cells. DNA damage was assessed by the single-cell gel electrophoresis (comet assay) and DNA methylation status by the cytosine extension assays. Cells exposed to ionizing radiation (0, 1, 2, 4, or 8 Gy) showed increasing rates of percentage of DNA in the tail and tail length with increasing radiation dose. When cells were exposed to room air (normoxia) for 1 day and 95% O2 (hyperoxia) for 1, 2, 3, 4, and 5 days, data indicated that hyperoxia caused time-dependent increases in levels of (a) single strand breaks, (b) double strand breaks, and (c) 8-oxoguanine. Decreased DNA methylation also was observed at day 5 of hyperoxic exposure, suggesting that hyperoxia-induced DNA damage can influence patterns of DNA methylation in a lung-derived cell line.
Toxicological Sciences | 2015
Livia A. Veress; Dana Anderson; Tara B. Hendry-Hofer; Paul R. Houin; Jacqueline S. Rioux; Rhonda B. Garlick; Joan E. Loader; Danielle Paradiso; Russell W. Smith; Raymond C. Rancourt; Wesley W. Holmes; Carl W. White
RATIONALE Sulfur mustard (SM) is a chemical weapon stockpiled today in volatile regions of the world. SM inhalation causes a life-threatening airway injury characterized by airway obstruction from fibrin casts, which can lead to respiratory failure and death. Mortality in those requiring intubation is more than 80%. No therapy exists to prevent mortality after SM exposure. Our previous work using the less toxic analog of SM, 2-chloroethyl ethyl sulfide, identified tissue plasminogen activator (tPA) an effective rescue therapy for airway cast obstruction (Veress, L. A., Hendry-Hofer, T. B., Loader, J. E., Rioux, J. S., Garlick, R. B., and White, C. W. (2013). Tissue plasminogen activator prevents mortality from sulfur mustard analog-induced airway obstruction. Am. J. Respir. Cell Mol. Biol. 48, 439-447). It is not known if exposure to neat SM vapor, the primary agent used in chemical warfare, will also cause death due to airway casts, and if tPA could be used to improve outcome. METHODS Adult rats were exposed to SM, and when oxygen saturation reached less than 85% (median: 6.5 h), intratracheal tPA or placebo was given under isoflurane anesthesia every 4 h for 48 h. Oxygen saturation, clinical distress, and arterial blood gases were assessed. Microdissection was done to assess airway obstruction by casts. RESULTS Intratracheal tPA treatment eliminated mortality (0% at 48 h) and greatly improved morbidity after lethal SM inhalation (100% death in controls). tPA normalized SM-associated hypoxemia, hypercarbia, and lactic acidosis, and improved respiratory distress. Moreover, tPA treatment resulted in greatly diminished airway casts, preventing respiratory failure from airway obstruction. CONCLUSIONS tPA given via airway more than 6 h after exposure prevented death from lethal SM inhalation, and normalized oxygenation and ventilation defects, thereby rescuing from respiratory distress and failure. Intra-airway tPA should be considered as a life-saving rescue therapy after a significant SM inhalation exposure incident.
Toxicology and Applied Pharmacology | 2013
Raymond C. Rancourt; Livia A. Veress; Aftab Ahmad; Tara B. Hendry-Hofer; Jacqueline S. Rioux; Rhonda B. Garlick; Carl W. White
UNLABELLED Sulfur mustard (SM) inhalation causes airway injury, with enhanced vascular permeability, coagulation, and airway obstruction. The objective of this study was to determine whether recombinant tissue factor pathway inhibitor (TFPI) could inhibit this pathogenic sequence. METHODS Rats were exposed to the SM analog 2-chloroethyl ethyl sulfide (CEES) via nose-only aerosol inhalation. One hour later, TFPI (1.5mg/kg) in vehicle, or vehicle alone, was instilled into the trachea. Arterial O2 saturation was monitored using pulse oximetry. Twelve hours after exposure, animals were euthanized and bronchoalveolar lavage fluid (BALF) and plasma were analyzed for prothrombin, thrombin-antithrombin complex (TAT), active plasminogen activator inhibitor-1 (PAI-1) levels, and fluid fibrinolytic capacity. Lung steady-state PAI-1 mRNA was measured by RT-PCR analysis. Airway-capillary leak was estimated by BALF protein and IgM, and by pleural fluid measurement. In additional animals, airway cast formation was assessed by microdissection and immunohistochemical detection of airway fibrin. RESULTS Airway obstruction in the form of fibrin-containing casts was evident in central conducting airways of rats receiving CEES. TFPI decreased cast formation, and limited severe hypoxemia. Findings of reduced prothrombin consumption, and lower TAT complexes in BALF, demonstrated that TFPI acted to limit thrombin activation in airways. TFPI, however, did not appreciably affect CEES-induced airway protein leak, PAI-1 mRNA induction, or inhibition of the fibrinolytic activity present in airway surface liquid. CONCLUSIONS Intratracheal administration of TFPI limits airway obstruction, improves gas exchange, and prevents mortality in rats with sulfur mustard-analog-induced acute lung injury.
Journal of Immunology | 2015
Sarah McKenna; Megan Gossling; Alejandro Bugarini; Elizabeth Hill; Aimee L. Anderson; Raymond C. Rancourt; Natarajan Balasubramaniyan; Karim C. El Kasmi; Clyde J. Wright
Elevated serum concentrations of the vasoactive protein endothelin-1 (ET-1) occur in the setting of systemic inflammatory response syndrome and contribute to distal organ hypoperfusion and pulmonary hypertension. Thus, understanding the cellular source and transcriptional regulation of systemic inflammatory stress-induced ET-1 expression may reveal therapeutic targets. Using a murine model of LPS-induced septic shock, we demonstrate that the hepatic macrophage is the primary source of elevated circulating ET-1, rather than the endothelium as previously proposed. Using pharmacologic inhibitors, ET-1 promoter luciferase assays, and by silencing and overexpressing NF-κB inhibitory protein IκB expression, we demonstrate that LPS-induced ET-1 expression occurs via an NF-κB–dependent pathway. Finally, the specific role of the cRel/p65 inhibitory protein IκBβ was evaluated. Although cytoplasmic IκBβ inhibits activity of cRel-containing NF-κB dimers, nuclear IκBβ stabilizes NF-κB/DNA binding and enhances gene expression. Using targeted pharmacologic therapies to specifically prevent IκBβ/NF-κB signaling, as well as mice genetically modified to overexpress IκBβ, we show that nuclear IκBβ is both necessary and sufficient to drive LPS-induced ET-1 expression. Together, these results mechanistically link the innate immune response mediated by IκBβ/NF-κB to ET-1 expression and potentially reveal therapeutic targets for patients with Gram-negative septic shock.
Pediatric Pulmonology | 2015
Paul R. Houin; Livia A. Veress; Raymond C. Rancourt; Tara B. Hendry-Hofer; Joan E. Loader; Jacqueline S. Rioux; Rhonda B. Garlick; Carl W. White
Background: Inhalation of sulfur mustard (SM) and SM analog, 2‐chloroethyl ethyl sulfide (CEES), cause fibrinous cast formation that occludes the conducting airways, similar to children with Fontan physiology‐induced plastic bronchitis. These airway casts cause significant mortality and morbidity, including hypoxemia and respiratory distress. Our hypothesis was that intratracheal heparin, a highly cost effective and easily preserved rescue therapy, could reverse morbidity and mortality induced by bronchial cast formation. Methods: Sprague‐Dawley rats were exposed to 7.5% CEES via nose‐only aerosol inhalation to produce extensive cast formation and mortality. The rats were distributed into three groups: non‐treated, phosphate‐buffered saline (PBS)‐treated, and heparin‐treated groups. Morbidity was assessed with oxygen saturations and clinical distress. Blood and bronchoalveolar lavage fluid (BALF) were obtained for analysis, and lungs were fixed for airway microdissection to quantify the extent of airway cast formation. Results: Heparin, given intratracheally, improved survival (100%) when compared to non‐treated (75%) and PBS‐treated (90%) controls. Heparin‐treated rats also had improved oxygen saturations, clinical distress and airway cast scores. Heparin‐treated rats had increased thrombin clotting times, factor Xa inhibition and activated partial thromboplastin times, indicating systemic absorption of heparin. There were also increased red blood cells (RBCs) in the BALF in 2/6 heparin‐treated rats compared to PBS‐treated control rats. Conclusions: Intratracheal heparin 1 hr after CEES inhalation improved survival, oxygenation, airway obstruction, and clinical distress. There was systemic absorption of heparin in rats treated intratracheally. Some rats had increased RBCs in BALF, suggesting a potential for intrapulmonary bleeding if used chronically after SM inhalation. Pediatr Pulmonol. 2015; 50:118–126.
Experimental and Toxicologic Pathology | 2015
Dinesh G. Goswami; Dileep Kumar; Neera Tewari-Singh; David J. Orlicky; Anil K. Jain; Rama Kant; Raymond C. Rancourt; Deepanshi Dhar; Swetha Inturi; Chapla Agarwal; Carl W. White; Rajesh Agarwal
Vesicating agents sulfur mustard (SM) and nitrogen mustard (NM) are reported to be easily absorbed by skin upon exposure causing severe cutaneous injury and blistering. Our studies show that topical exposure of NM (3.2mg) onto SKH-1 hairless mouse skin, not only caused skin injury, but also led to significant body weight loss and 40-80% mortality (120 h post-exposure), suggesting its systemic effects. Accordingly, further studies herein show that NM exposure initiated an increase in circulating white blood cells by 24h (neutrophils, eosinophils and basophils) and thereafter a decrease (neutrophils, lymphocytes and monocytes). NM exposure also reduced both white and red pulp areas of the spleen. In the small intestine, NM exposure caused loss of membrane integrity of the surface epithelium, abnormal structure of glands and degeneration of villi. NM exposure also resulted in the dilation of glomerular capillaries of kidneys, and an increase in blood urea nitrogen/creatinine ratio. Our results here with NM are consistent with earlier reports that exposure to higher SM levels can cause damage to the hematopoietic system, and kidney, spleen and gastrointestinal tract toxicity. These outcomes will add to our understanding of the toxic effects of topical vesicant exposure, which might be helpful towards developing effective countermeasures against injuries from acute topical exposures.
PLOS ONE | 2011
Shama Ahmad; David P. Nichols; Matthew Strand; Raymond C. Rancourt; Scott H. Randell; Carl W. White; Aftab Ahmad
Calcium mobilization can regulate a wide range of essential functions of respiratory epithelium, including ion transport, ciliary beat frequency, and secretion of mucus, all of which are modified in cystic fibrosis (CF). SERCA2, an important controller of calcium signaling, is deficient in CF epithelium. We conducted this study to determine whether SERCA2 deficiency can modulate airway epithelial responses to environmental oxidants such as ozone. This could contribute to the pathogenesis of pulmonary exacerbations, which are important and frequent clinical events in CF. To address this, we used air-liquid interface (ALI) cultures of non-CF and CF cell lines, as well as differentiated cultures of cells derived from non-CF and CF patients. We found that ozone exposure caused enhanced membrane damage, mitochondrial dysfunction and apoptotic cell death in CF airway epithelial cell lines relative to non-CF. Ozone exposure caused increased proinflammatory cytokine production in CF airway epithelial cell lines. Elevated proinflammatory cytokine production also was observed in shRNA-mediated SERCA2 knockdown cells. Overexpression of SERCA2 reversed ozone-induced proinflammatory cytokine production. Ozone-induced proinflammatory cytokine production was NF-κB- dependent. In a stable NF-κB reporter cell line, SERCA2 inhibition and knockdown both upregulated cytomix-induced NF-κB activity, indicating importance of SERCA2 in modulating NF-κB activity. In this system, increased NF-κB activity was also accompanied by increased IL-8 production. Ozone also induced NF-κB activity and IL-8 release, an effect that was greater in SERCA2-silenced NF-κB-reporter cells. SERCA2 overexpression reversed cytomix-induced increased IL-8 release and total nuclear p65 in CFTR-deficient (16HBE-AS) cells. These studies suggest that SERCA2 is an important regulator of the proinflammatory response of airway epithelial cells and could be a potential therapeutic target.
Toxicological Sciences | 2017
Matthew D. McGraw; Jaqueline S. Rioux; Rhonda B. Garlick; Raymond C. Rancourt; Carl W. White; Livia A. Veress
Sulfur mustard (SM) is a chemical warfare agent that causes chronic airway remodeling. This studys objective was to assess for changes to the bronchiolar epithelium after SM exposure to explain its contribution to chronic airway remodeling. Materials and methods Adult male rats were exposed to a sublethal dose of SM inhalation (1.0-1.2 mg/kg) for 50 min. Histological sections of the bronchiolar epithelium were analyzed for changes using hematoxylin and eosin, trichrome, and immunofluorescent staining for acetylated tubulin (AT) and club cell secretory protein (CCSP). CCSP in bronchoalveolar lavage fluid was assessed using western blot. A bromodeoxyuridine (BRDU) assay was used to assess for epithelial proliferation, and real-time PCR measured changes in Notch mRNA expression. Results SM caused significant proximal bronchiolar epithelial injury with epithelial denudation, loss of acetylated tubulin and CCSP staining, and reduced bronchoalveolar lavage fluid CCSP levels. bromodeoxyuridine (BRDU) + staining of proximal bronchiolar epithelial cells was not increased, but staining was increased in the distal bronchiolar epithelium. One month after injury, the proximal bronchiolar epithelium was not fully repaired. Significant collagen deposition surrounded proximal bronchioles with luminal obstruction, consistent with bronchiolitis obliterans. These changes corresponded with a downregulation of Notch1, Notch3, and Hes1 mRNA expressions. Conclusions This study demonstrates that SM exposure resulted in severe proximal airway epithelial injury, persistent morphological changes, impaired epithelial proliferation and, ultimately, bronchiolitis obliterans. These changes occurred at the same time that the Notch signaling genes were downregulated. Thus, the lung epithelium and the Notch signaling pathway may be worthy targets for the prevention of chronic airway remodeling after SM inhalation injury.