Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heidi Hauser is active.

Publication


Featured researches published by Heidi Hauser.


Nature | 2005

The genome of the social amoeba Dictyostelium discoideum

Ludwig Eichinger; J. A. Pachebat; G. Glöckner; Marie-Adele Rajandream; Richard Sucgang; Matthew Berriman; J. Song; Rolf Olsen; Karol Szafranski; Qikai Xu; Budi Tunggal; Sarah K. Kummerfeld; B. A. Konfortov; Francisco Rivero; Alan Thomas Bankier; R. Lehmann; N. Hamlin; Robert Davies; Pascale Gaudet; Petra Fey; Karen E Pilcher; Guokai Chen; David L. Saunders; Erica Sodergren; Paul Davis; Arnaud Kerhornou; X. Nie; Neil Hall; Christophe Anjard; Lisa Hemphill

The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal–fungal lineage after the plant–animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.


Nature Genetics | 2003

Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica

Julian Parkhill; Mohammed Sebaihia; Andrew Preston; Lee Murphy; Nicholas R. Thomson; David Harris; Matthew T. G. Holden; Carol Churcher; Stephen D. Bentley; Karen Mungall; Ana Cerdeño-Tárraga; Louise M. Temple; Keith James; Barbara Harris; Michael A. Quail; Mark Achtman; Rebecca Atkin; Steven Baker; David Basham; Nathalie Bason; Inna Cherevach; Tracey Chillingworth; Matthew Collins; Anne Cronin; Paul Davis; Jonathan Doggett; Theresa Feltwell; Arlette Goble; N. Hamlin; Heidi Hauser

Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative β-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.


Nature | 2008

The genome of the simian and human malaria parasite Plasmodium knowlesi.

Arnab Pain; Ulrike Böhme; Andrew Berry; Karen Mungall; Robert D. Finn; Andrew P. Jackson; T. Mourier; J. Mistry; E. M. Pasini; Martin Aslett; S. Balasubrammaniam; Karsten M. Borgwardt; Karen Brooks; Celine Carret; Tim Carver; Inna Cherevach; Tracey Chillingworth; Taane G. Clark; M. R. Galinski; Neil Hall; D. Harper; David Harris; Heidi Hauser; A. Ivens; C. S. Janssen; Thomas M. Keane; N. Larke; S. Lapp; M. Marti; S. Moule

Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the ‘kra’ monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood cell preference, absence of a dormant liver stage or ‘hypnozoite’ in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described, and it provides an opportunity for comparison with the recently completed P. vivax genome and other sequenced Plasmodium genomes. In contrast to other Plasmodium genomes, putative variant antigen families are dispersed throughout the genome and are associated with intrachromosomal telomere repeats. One of these families, the KIRs, contains sequences that collectively match over one-half of the host CD99 extracellular domain, which may represent an unusual form of molecular mimicry.


Nature | 2002

Sequence of Plasmodium falciparum chromosomes 1, 3–9 and 13

Neil Hall; Arnab Pain; Matthew Berriman; Carol Churcher; Barbara Harris; David Harris; Karen Mungall; Sharen Bowman; Rebecca Atkin; Stephen Baker; Andy Barron; Karen Brooks; Caroline O. Buckee; C. Burrows; Inna Cherevach; Tracey Chillingworth; Z. Christodoulou; Louise Clark; Richard Clark; Craig Corton; Ann Cronin; Robert Davies; Paul Davis; P. Dear; F. Dearden; Jonathon Doggett; Theresa Feltwell; Arlette Goble; Ian Goodhead; R. Gwilliam

Since the sequencing of the first two chromosomes of the malaria parasite, Plasmodium falciparum, there has been a concerted effort to sequence and assemble the entire genome of this organism. Here we report the sequence of chromosomes 1, 3–9 and 13 of P. falciparum clone 3D7—these chromosomes account for approximately 55% of the total genome. We describe the methods used to map, sequence and annotate these chromosomes. By comparing our assemblies with the optical map, we indicate the completeness of the resulting sequence. During annotation, we assign Gene Ontology terms to the predicted gene products, and observe clustering of some malaria-specific terms to specific chromosomes. We identify a highly conserved sequence element found in the intergenic region of internal var genes that is not associated with their telomeric counterparts.


Journal of Bacteriology | 2009

The Genome of Burkholderia cenocepacia J2315, an Epidemic Pathogen of Cystic Fibrosis Patients

Matthew T. G. Holden; Helena M. B. Seth-Smith; Lisa Crossman; Mohammed Sebaihia; Stephen D. Bentley; Ana Cerdeño-Tárraga; Nicholas R. Thomson; Nathalie Bason; Michael A. Quail; Sarah Sharp; Inna Cherevach; Carol Churcher; Ian Goodhead; Heidi Hauser; Nancy Holroyd; Karen Mungall; P. D. Scott; Danielle Walker; Brian R. White; Helen Rose; Pernille Iversen; Dalila Mil-Homens; Eduardo P. C. Rocha; Arsenio M. Fialho; Adam Baldwin; Christopher G. Dowson; Bart Barrell; John R. W. Govan; Peter Vandamme; C. Anthony Hart

Bacterial infections of the lungs of cystic fibrosis (CF) patients cause major complications in the treatment of this common genetic disease. Burkholderia cenocepacia infection is particularly problematic since this organism has high levels of antibiotic resistance, making it difficult to eradicate; the resulting chronic infections are associated with severe declines in lung function and increased mortality rates. B. cenocepacia strain J2315 was isolated from a CF patient and is a member of the epidemic ET12 lineage that originated in Canada or the United Kingdom and spread to Europe. The 8.06-Mb genome of this highly transmissible pathogen comprises three circular chromosomes and a plasmid and encodes a broad array of functions typical of this metabolically versatile genus, as well as numerous virulence and drug resistance functions. Although B. cenocepacia strains can be isolated from soil and can be pathogenic to both plants and man, J2315 is representative of a lineage of B. cenocepacia rarely isolated from the environment and which spreads between CF patients. Comparative analysis revealed that ca. 21% of the genome is unique in comparison to other strains of B. cenocepacia, highlighting the genomic plasticity of this species. Pseudogenes in virulence determinants suggest that the pathogenic response of J2315 may have been recently selected to promote persistence in the CF lung. The J2315 genome contains evidence that its unique and highly adapted genetic content has played a significant role in its success as an epidemic CF pathogen.


PLOS Genetics | 2006

The Complete Genome Sequence and Comparative Genome Analysis of the High Pathogenicity Yersinia enterocolitica Strain 8081

Nicholas R. Thomson; Sarah L. Howard; Brendan W. Wren; Matthew T. G. Holden; Lisa Crossman; Gregory L. Challis; Carol Churcher; Karen Mungall; Karen Brooks; Tracey Chillingworth; Theresa Feltwell; Zahra Abdellah; Heidi Hauser; Kay Jagels; Mark Maddison; Sharon Moule; Mandy Sanders; Sally Whitehead; Michael A. Quail; Gordon Dougan; Julian Parkhill; Michael B. Prentice

The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B) and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common themes in the genome evolution of other human enteropathogens.


PLOS ONE | 2008

Telomeric Expression Sites Are Highly Conserved in Trypanosoma brucei

Christiane Hertz-Fowler; Luisa M. Figueiredo; Michael A. Quail; Marion Becker; Andrew C Jackson; Nathalie Bason; Karen Brooks; Carol Churcher; Samah Fahkro; Ian Goodhead; Paul Trafford Heath; Magdalena Kartvelishvili; Karen Mungall; David K. Harris; Heidi Hauser; Mandy Sanders; David L. Saunders; Kathy Seeger; Sarah Sharp; Jesse E. Taylor; Danielle Walker; Brian R. White; Rosanna Young; George A.M. Cross; Gloria Rudenko; J. David Barry; Edward J. Louis; Matthew Berriman

Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.


PLOS ONE | 2009

Rapid Evolution of Virulence and Drug Resistance in the Emerging Zoonotic Pathogen Streptococcus suis

Matthew T. G. Holden; Heidi Hauser; Mandy Sanders; Thi Hoa Ngo; Inna Cherevach; Ann Cronin; Ian Goodhead; Karen Mungall; Michael A. Quail; Claire Price; Ester Rabbinowitsch; Sarah Sharp; Nicholas J. Croucher; Tran Thi Bich Chieu; Nguyen Thi Hoang Mai; To Song Diep; Nguyen Tran Chinh; Michael A. Kehoe; James A. Leigh; Philip N. Ward; Christopher G. Dowson; Adrian M. Whatmore; N. Chanter; Pernille Iversen; Marcelo Gottschalk; Josh Slater; Hilde E. Smith; Brian G. Spratt; Jianguo Xu; Changyun Ye

Background Streptococcus suis is a zoonotic pathogen that infects pigs and can occasionally cause serious infections in humans. S. suis infections occur sporadically in human Europe and North America, but a recent major outbreak has been described in China with high levels of mortality. The mechanisms of S. suis pathogenesis in humans and pigs are poorly understood. Methodology/Principal Findings The sequencing of whole genomes of S. suis isolates provides opportunities to investigate the genetic basis of infection. Here we describe whole genome sequences of three S. suis strains from the same lineage: one from European pigs, and two from human cases from China and Vietnam. Comparative genomic analysis was used to investigate the variability of these strains. S. suis is phylogenetically distinct from other Streptococcus species for which genome sequences are currently available. Accordingly, ∼40% of the ∼2 Mb genome is unique in comparison to other Streptococcus species. Finer genomic comparisons within the species showed a high level of sequence conservation; virtually all of the genome is common to the S. suis strains. The only exceptions are three ∼90 kb regions, present in the two isolates from humans, composed of integrative conjugative elements and transposons. Carried in these regions are coding sequences associated with drug resistance. In addition, small-scale sequence variation has generated pseudogenes in putative virulence and colonization factors. Conclusions/Significance The genomic inventories of genetically related S. suis strains, isolated from distinct hosts and diseases, exhibit high levels of conservation. However, the genomes provide evidence that horizontal gene transfer has contributed to the evolution of drug resistance.


Journal of Bacteriology | 2008

Complete Genome Sequence of Uropathogenic Proteus mirabilis, a Master of both Adherence and Motility

Melanie M. Pearson; Mohammed Sebaihia; Carol Churcher; Michael A. Quail; Aswin Sai Narain Seshasayee; Nicholas M. Luscombe; Zahra Abdellah; Claire Arrosmith; Becky Atkin; Tracey Chillingworth; Heidi Hauser; Kay Jagels; Sharon Moule; Karen Mungall; Halina Norbertczak; Ester Rabbinowitsch; Danielle Walker; Sally Whithead; Nicholas R. Thomson; Philip N. Rather; Julian Parkhill; Harry L. T. Mobley

The gram-negative enteric bacterium Proteus mirabilis is a frequent cause of urinary tract infections in individuals with long-term indwelling catheters or with complicated urinary tracts (e.g., due to spinal cord injury or anatomic abnormality). P. mirabilis bacteriuria may lead to acute pyelonephritis, fever, and bacteremia. Most notoriously, this pathogen uses urease to catalyze the formation of kidney and bladder stones or to encrust or obstruct indwelling urinary catheters. Here we report the complete genome sequence of P. mirabilis HI4320, a representative strain cultured in our laboratory from the urine of a nursing home patient with a long-term (> or =30 days) indwelling urinary catheter. The genome is 4.063 Mb long and has a G+C content of 38.88%. There is a single plasmid consisting of 36,289 nucleotides. Annotation of the genome identified 3,685 coding sequences and seven rRNA loci. Analysis of the sequence confirmed the presence of previously identified virulence determinants, as well as a contiguous 54-kb flagellar regulon and 17 types of fimbriae. Genes encoding a potential type III secretion system were identified on a low-G+C-content genomic island containing 24 intact genes that appear to encode all components necessary to assemble a type III secretion system needle complex. In addition, the P. mirabilis HI4320 genome possesses four tandem copies of the zapE metalloprotease gene, genes encoding six putative autotransporters, an extension of the atf fimbrial operon to six genes, including an mrpJ homolog, and genes encoding at least five iron uptake mechanisms, two potential type IV secretion systems, and 16 two-component regulators.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species

Andrew P. Jackson; Andrew Berry; Martin Aslett; Harriet C. Allison; Peter Burton; Jana Vavrova-Anderson; Robert H. Brown; Hilary P. Browne; Nicola Corton; Heidi Hauser; John Gamble; Ruth Gilderthorp; Lucio Marcello; Jacqueline McQuillan; Thomas D. Otto; Michael A. Quail; Mandy Sanders; Andries J. van Tonder; Michael L. Ginger; Mark C. Field; J. David Barry; Christiane Hertz-Fowler; Matthew Berriman

Antigenic variation enables pathogens to avoid the host immune response by continual switching of surface proteins. The protozoan blood parasite Trypanosoma brucei causes human African trypanosomiasis (“sleeping sickness”) across sub-Saharan Africa and is a model system for antigenic variation, surviving by periodically replacing a monolayer of variant surface glycoproteins (VSG) that covers its cell surface. We compared the genome of Trypanosoma brucei with two closely related parasites Trypanosoma congolense and Trypanosoma vivax, to reveal how the variant antigen repertoire has evolved and how it might affect contemporary antigenic diversity. We reconstruct VSG diversification showing that Trypanosoma congolense uses variant antigens derived from multiple ancestral VSG lineages, whereas in Trypanosoma brucei VSG have recent origins, and ancestral gene lineages have been repeatedly co-opted to novel functions. These historical differences are reflected in fundamental differences between species in the scale and mechanism of recombination. Using phylogenetic incompatibility as a metric for genetic exchange, we show that the frequency of recombination is comparable between Trypanosoma congolense and Trypanosoma brucei but is much lower in Trypanosoma vivax. Furthermore, in showing that the C-terminal domain of Trypanosoma brucei VSG plays a crucial role in facilitating exchange, we reveal substantial species differences in the mechanism of VSG diversification. Our results demonstrate how past VSG evolution indirectly determines the ability of contemporary parasites to generate novel variant antigens through recombination and suggest that the current model for antigenic variation in Trypanosoma brucei is only one means by which these parasites maintain chronic infections.

Collaboration


Dive into the Heidi Hauser's collaboration.

Top Co-Authors

Avatar

Karen Mungall

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Carol Churcher

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Nicholas R. Thomson

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Michael A. Quail

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Inna Cherevach

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Tracey Chillingworth

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathalie Bason

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Karen Brooks

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Kay Jagels

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge