Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heidi Noels is active.

Publication


Featured researches published by Heidi Noels.


Nature Medicine | 2011

Atherosclerosis: current pathogenesis and therapeutic options

Christian Weber; Heidi Noels

Coronary artery disease (CAD) arising from atherosclerosis is a leading cause of death and morbidity worldwide. The underlying pathogenesis involves an imbalanced lipid metabolism and a maladaptive immune response entailing a chronic inflammation of the arterial wall. The disturbed equilibrium of lipid accumulation, immune responses and their clearance is shaped by leukocyte trafficking and homeostasis governed by chemokines and their receptors. New pro- and anti-inflammatory pathways linking lipid and inflammation biology have been discovered, and genetic profiling studies have unveiled variations involved in human CAD. The growing understanding of the inflammatory processes and mediators has uncovered an intriguing diversity of targetable mechanisms that can be exploited to complement lipid-lowering therapies. Here we aim to systematically survey recently identified molecular mechanisms, translational developments and clinical strategies for targeting lipid-related inflammation in atherosclerosis and CAD.


Science Signaling | 2009

Delivery of MicroRNA-126 by Apoptotic Bodies Induces CXCL12-Dependent Vascular Protection

Alma Zernecke; Kiril Bidzhekov; Heidi Noels; Erdenechimeg Shagdarsuren; Lin Gan; Bernd Denecke; Mihail Hristov; Thomas Köppel; Maliheh Nazari Jahantigh; Esther Lutgens; Shusheng Wang; Eric N. Olson; Andreas Schober; Christian Weber

Apoptotic endothelial cells release microRNA-containing microvesicles to modulate the responses of neighboring cells and reduce atherosclerosis in mice. Sounding the Alarm In addition to its importance in development and homeostasis, apoptotic cell death is implicated in a number of diseases, including atherosclerosis. Apoptotic endothelial cells at atherosclerotic plaques release microvesicles known as apoptotic bodies into the circulation, and their abundance correlates with negative indicators of disease. Zernecke et al. showed that apoptotic bodies from endothelial cells contained microRNA-126 (miR-126). Neighboring vascular cells took up the microvesicles, which allowed miR-126 to reduce the abundance of an inhibitor of the signaling of the chemokine receptor CXCR4, resulting in the increased production of CXCL12, the ligand for CXCR4. CXCL12 mediated the recruitment to atherosclerotic plaques of progenitor cells from the bone marrow, which limited plaque size. Apoptotic bodies isolated from human patients with atherosclerosis reduced the size of plaques in different mouse models of atherosclerosis. Thus, dying endothelial cells send alarm signals in the form of packaged microRNA to neighboring cells to trigger a healing response that reduces atherosclerosis. Apoptosis is a pivotal process in embryogenesis and postnatal cell homeostasis and involves the shedding of membranous microvesicles termed apoptotic bodies. In response to tissue damage, the CXC chemokine CXCL12 and its receptor CXCR4 counteract apoptosis and recruit progenitor cells. Here, we show that endothelial cell–derived apoptotic bodies are generated during atherosclerosis and convey paracrine alarm signals to recipient vascular cells that trigger the production of CXCL12. CXCL12 production was mediated by microRNA-126 (miR-126), which was enriched in apoptotic bodies and repressed the function of regulator of G protein (heterotrimeric guanosine triphosphate–binding protein) signaling 16, an inhibitor of G protein–coupled receptor (GPCR) signaling. This enabled CXCR4, a GPCR, to trigger an autoregulatory feedback loop that increased the production of CXCL12. Administration of apoptotic bodies or miR-126 limited atherosclerosis, promoted the incorporation of Sca-1+ progenitor cells, and conferred features of plaque stability on different mouse models of atherosclerosis. This study highlights functions of microRNAs in health and disease that may extend to the recruitment of progenitor cells during other forms of tissue repair or homeostasis.


Journal of Clinical Investigation | 2012

MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages

Maliheh Nazari-Jahantigh; Yuanyuan Wei; Heidi Noels; Shamima Akhtar; Zhe Zhou; Rory R. Koenen; Kathrin Heyll; Felix Gremse; Fabian Kiessling; Jochen Grommes; Christian Weber; Andreas Schober

Macrophages in atherosclerotic plaques drive inflammatory responses, degrade lipoproteins, and phagocytose dead cells. MicroRNAs (miRs) control the differentiation and activity of macrophages by regulating the signaling of key transcription factors. However, the functional role of macrophage-related miRs in the immune response during atherogenesis is unknown. Here, we report that miR-155 is specifically expressed in atherosclerotic plaques and proinflammatory macrophages, where it was induced by treatment with mildly oxidized LDL (moxLDL) and IFN-γ. Leukocyte-specific Mir155 deficiency reduced plaque size and number of lesional macrophages after partial carotid ligation in atherosclerotic (Apoe-/-) mice. In macrophages stimulated with moxLDL/IFN-γ in vitro, and in lesional macrophages, loss of Mir155 reduced the expression of the chemokine CCL2, which promotes the recruitment of monocytes to atherosclerotic plaques. Additionally, we found that miR-155 directly repressed expression of BCL6, a transcription factor that attenuates proinflammatory NF-κB signaling. Silencing of Bcl6 in mice harboring Mir155-/- macrophages enhanced plaque formation and CCL2 expression. Taken together, these data demonstrated that miR-155 plays a key role in atherogenic programming of macrophages to sustain and enhance vascular inflammation.


Nature Medicine | 2014

MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1

Andreas Schober; Maliheh Nazari-Jahantigh; Yuanyuan Wei; Kiril Bidzhekov; Felix Gremse; Jochen Grommes; Remco T.A. Megens; Kathrin Heyll; Heidi Noels; Michael Hristov; Shusheng Wang; Fabian Kiessling; Eric N. Olson; Christian Weber

Atherosclerosis, a hyperlipidemia-induced chronic inflammatory process of the arterial wall, develops preferentially at sites where disturbed laminar flow compromises endothelial cell (EC) function. Here we show that endothelial miR-126-5p maintains a proliferative reserve in ECs through suppression of the Notch1 inhibitor delta-like 1 homolog (Dlk1) and thereby prevents atherosclerotic lesion formation. Endothelial recovery after denudation was impaired in Mir126−/− mice because lack of miR-126-5p, but not miR-126-3p, reduced EC proliferation by derepressing Dlk1. At nonpredilection sites, high miR-126-5p levels in endothelial cells confer a proliferative reserve that compensates for the antiproliferative effects of hyperlipidemia, such that atherosclerosis was exacerbated in Mir126−/− mice. In contrast, downregulation of miR-126-5p by disturbed flow abrogated EC proliferation at predilection sites in response to hyperlipidemic stress through upregulation of Dlk1 expression. Administration of miR-126-5p rescued EC proliferation at predilection sites and limited atherosclerosis, introducing a potential therapeutic approach.


Frontiers in Physiology | 2014

The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease

Yvonne Döring; Lukas Pawig; Christian Weber; Heidi Noels

The chemokine receptor CXCR4 and its ligand CXCL12 play an important homeostatic function by mediating the homing of progenitor cells in the bone marrow and regulating their mobilization into peripheral tissues upon injury or stress. Although the CXCL12/CXCR4 interaction has long been regarded as a monogamous relation, the identification of the pro-inflammatory chemokine macrophage migration inhibitory factor (MIF) as an important second ligand for CXCR4, and of CXCR7 as an alternative receptor for CXCL12, has undermined this interpretation and has considerably complicated the understanding of CXCL12/CXCR4 signaling and associated biological functions. This review aims to provide insight into the current concept of the CXCL12/CXCR4 axis in myocardial infarction (MI) and its underlying pathologies such as atherosclerosis and injury-induced vascular restenosis. It will discuss main findings from in vitro studies, animal experiments and large-scale genome-wide association studies. The importance of the CXCL12/CXCR4 axis in progenitor cell homing and mobilization will be addressed, as will be the function of CXCR4 in different cell types involved in atherosclerosis. Finally, a potential translation of current knowledge on CXCR4 into future therapeutical application will be discussed.


Trends in Cardiovascular Medicine | 2009

Macrophage Migration Inhibitory Factor: A Noncanonical Chemokine Important in Atherosclerosis

Heidi Noels; Jürgen Bernhagen; Christian Weber

In the recent years, atherogenesis has increasingly been linked to inflammatory processes in the injured vessel wall. Recruitment and arrest of monocytes, T cells, and neutrophils via the concerted actions of multiple chemokines and their chemokine receptors have been the subject of intense research and are being appreciated as key events underlying atherosclerotic lesion formation and progression. The evolutionary conserved cytokine macrophage migration inhibitory factor (MIF) exhibits prominent proinflammatory and proatherogenic functions, and the latest findings on its chemotactic and chemokine-like properties imply MIF as a crucial drug target for the treatment of inflammatory diseases. In this review, the role of MIF in atherosclerosis and injury-induced neointima formation is discussed. We place an emphasis on its proinflammatory and chemokine-like functions in the context of underlying extra- and intracellular signaling mechanisms. These findings clearly distinguish MIF from other cytokines in atherosclerosis and justify the intensive search for inhibitors targeting MIF in the treatment of inflammatory diseases, including advanced atherosclerosis.


Frontiers in Immunology | 2015

Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives

Lukas Pawig; Christina Klasen; Christian Weber; Juergen Bernhagen; Heidi Noels

CXCR4 and its ligand CXCL12 mediate the homing of progenitor cells in the bone marrow and their recruitment to sites of injury, as well as affect processes such as cell arrest, survival, and angiogenesis. CXCL12 was long thought to be the sole CXCR4 ligand, but more recently the atypical chemokine macrophage migration inhibitory factor (MIF) was identified as an alternative, non-cognate ligand for CXCR4 and shown to mediate chemotaxis and arrest of CXCR4-expressing T-cells. This has complicated the understanding of CXCR4-mediated signaling and associated biological processes. Compared to CXCL12/CXCR4-induced signaling, only few details are known on MIF/CXCR4-mediated signaling and it remains unclear to which extent MIF and CXCL12 reciprocally influence CXCR4 binding and signaling. Furthermore, the atypical chemokine receptor 3 (ACKR3) (previously CXCR7) has added to the complexity of CXCR4 signaling due to its ability to bind CXCL12 and MIF, and to evoke CXCL12- and MIF-triggered signaling independently of CXCR4. Also, extracellular ubiquitin (eUb) and the viral protein gp120 (HIV) have been reported as CXCR4 ligands, whereas viral chemokine vMIP-II (Herpesvirus) and human β3-defensin (HBD-3) have been identified as CXCR4 antagonists. This review will provide insight into the diversity and inter-connections in the CXCR4 receptor/ligand family. We will discuss signaling pathways initiated by binding of CXCL12 vs. MIF to CXCR4, elaborate on how ACKR3 affects CXCR4 signaling, and summarize biological functions of CXCR4 signaling mediated by CXCL12 or MIF. Also, we will discuss eUb and gp120 as alternative ligands for CXCR4, and describe vMIP-II and HBD-3 as antagonists for CXCR4. Detailed insight into biological effects of CXCR4 signaling und underlying mechanisms, including diversity of CXCR4 ligands and inter-connections with other (chemokine) receptors, is clinically important, as the CXCR4 antagonist AMD3100 has been approved as stem cell mobilizer in specific disease settings.


Frontiers in Immunology | 2013

Arrest functions of the MIF ligand/receptor axes in atherogenesis

Sabine Tillmann; Jürgen Bernhagen; Heidi Noels

Macrophage migration inhibitory factor (MIF) has been defined as an important chemokine-like function (CLF) chemokine with an essential role in monocyte recruitment and arrest. Adhesion of monocytes to the vessel wall and their transendothelial migration are critical in atherogenesis and many other inflammatory diseases. Chemokines carefully control all steps of the monocyte recruitment process. Those chemokines specialized in controlling arrest are typically immobilized on the endothelial surface, mediating the arrest of rolling monocytes by chemokine receptor-triggered pathways. The chemokine receptor CXCR2 functions as an important arrest receptor on monocytes. An arrest function has been revealed for the bona fide CXCR2 ligands CXCL1 and CXCL8, but genetic studies also suggested that additional arrest chemokines are likely to be involved in atherogenic leukocyte recruitment. While CXCR2 is known to interact with numerous CXC chemokine ligands, the CLF chemokine MIF, which structurally does not belong to the CXC chemokine sub-family, was surprisingly identified as a non-cognate ligand of CXCR2, responsible for critical arrest functions during the atherogenic process. MIF was originally identified as macrophage migration inhibitory factor (this function being eponymous), but is now known as a potent inflammatory cytokine with CLFs including chemotaxis and leukocyte arrest. This review will cover the mechanisms underlying these functions, including MIF’s effects on LFA1 integrin activity and signal transduction, and will discuss the structural similarities between MIF and the bona fide CXCR2 ligand CXCL8 while emphasizing the structural differences. As MIF also interacts with CXCR4, a chemokine receptor implicated in CXCL12-elicited lymphocyte arrest, the arrest potential of the MIF/CXCR4 axis will also be scrutinized as well as the recently identified role of pericyte MIF in attracting leukocytes exiting through venules as part of the pericyte “motility instruction program.”


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Deficiency of Endothelial Cxcr4 Reduces Reendothelialization and Enhances Neointimal Hyperplasia After Vascular Injury in Atherosclerosis-Prone Mice

Heidi Noels; Baixue Zhou; Pathricia V. Tilstam; Wendy Theelen; Xiaofeng Li; Lukas Pawig; Corinna Schmitz; Shamima Akhtar; Sakine Simsekyilmaz; Erdenechimeg Shagdarsuren; Andreas Schober; Ralf H. Adams; Jürgen Bernhagen; Elisa A. Liehn; Yvonne Döring; Christian Weber

Objective—The Cxcl12/Cxcr4 chemokine ligand/receptor axis mediates the mobilization of smooth muscle cell progenitors, driving injury-induced neointimal hyperplasia. This study aimed to investigate the role of endothelial Cxcr4 in neointima formation. Approach and Results—&bgr;-Galactosidase staining using bone marrow x kinase (Bmx)-CreERT2 reporter mice and double immunofluorescence revealed an efficient and endothelial-specific deletion of Cxcr4 in Bmx-CreERT2+ compared with Bmx-CreERT2− Cxcr4-floxed apolipoprotein E–deficient (Apoe−/−) mice (referred to as Cxcr4EC-KOApoE−/− and Cxcr4EC-WT ApoE−/−, respectively). Endothelial Cxcr4 deficiency significantly increased wire injury–induced neointima formation in carotid arteries from Cxcr4EC-KOApoE−/− mice. The lesions displayed a higher number of macrophages, whereas the smooth muscle cell and collagen content were reduced. This was associated with a significant reduction in reendothelialization and endothelial cell proliferation in injured Cxcr4EC-KOApoE−/− carotids compared with Cxcr4EC-WTApoE−/− controls. Furthermore, stimulation of human aortic endothelial cells with chemokine (C-X-C motif) ligand 12 (CXCL12) significantly enhanced their wound-healing capacity in an in vitro scratch assay, an effect that could be reversed with the CXCR4 antagonist AMD3100. Also, flow cytometric analysis showed a reduced mobilization of Sca1+Flk1+Cd31+ and of Lin−Sca1+ progenitors in Cxcr4EC-KO ApoE−/− mice after vascular injury, although Cxcr4 surface expression was unaltered. No differences could be detected in plasma concentrations of Cxcl12, vascular endothelial growth factor, sphingosine 1-phosphate, or Flt3 (fms-related tyrosine kinase 3) ligand, all cytokines with an established role in progenitor cell mobilization. Nonetheless, double immunofluorescence revealed a significant reduction in local endothelial Cxcl12 staining in injured carotids from Cxcr4EC-KOApoE−/− mice. Conclusions—Endothelial Cxcr4 is crucial for efficient reendothelialization after vascular injury through endothelial wound healing and proliferation, and through the mobilization of Sca1+Flk1+Cd31+ cells, often referred to as circulating endothelial progenitor cells.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

The Use of High-Throughput Technologies to Investigate Vascular Inflammation and Atherosclerosis

Yvonne Döring; Heidi Noels; Christian Weber

The greatest challenge of scientific research is to understand the causes and consequences of disease. In recent years, great efforts have been devoted to unraveling the basic mechanisms of atherosclerosis (the underlying pathology of cardiovascular disease), which remains a major cause of morbidity and mortality worldwide. Because of the complex and multifactorial pathophysiology of cardiovascular disease, different research techniques have increasingly been combined to unravel genetic aspects, molecular pathways, and cellular functions involved in atherogenesis, vascular inflammation, and dyslipidemia to gain a multifaceted picture addressing this complexity. Thanks to the rapid evolution of high-throughput technologies, we are now able to generate large-scale data on the DNA, RNA, and protein levels. With the help of sophisticated computational tools, these data sets are integrated to enhance information extraction and are being increasingly used in a systems biology approach to model biological processes as interconnected and regulated networks. This review exemplifies the use of high-throughput technologies—such as genomics, transcriptomics, proteomics, and epigenomics—and systems biology to explore pathomechanisms of vascular inflammation and atherosclerosis.

Collaboration


Dive into the Heidi Noels's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lukas Pawig

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Boor

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jürgen Bernhagen

Ludwig Maximilian University of Munich

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge