Heidi W. Thermenos
Beth Israel Deaconess Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heidi W. Thermenos.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Susan Whitfield-Gabrieli; Heidi W. Thermenos; Snezana Milanovic; Ming T. Tsuang; Stephen V. Faraone; Robert W. McCarley; Martha Elizabeth Shenton; Alan I. Green; Alfonso Nieto-Castanon; Peter S. LaViolette; Joanne Wojcik; John D. E. Gabrieli; Larry J. Seidman
We examined the status of the neural network mediating the default mode of brain function, which typically exhibits greater activation during rest than during task, in patients in the early phase of schizophrenia and in young first-degree relatives of persons with schizophrenia. During functional MRI, patients, relatives, and controls alternated between rest and performance of working memory (WM) tasks. As expected, controls exhibited task-related suppression of activation in the default network, including medial prefrontal cortex (MPFC) and posterior cingulate cortex/precuneus. Patients and relatives exhibited significantly reduced task-related suppression in MPFC, and these reductions remained after controlling for performance. Increased task-related MPFC suppression correlated with better WM performance in patients and relatives and with less psychopathology in all 3 groups. For WM task performance, patients and relatives had greater activation in right dorsolateral prefrontal cortex (DLPFC) than controls. During rest and task, patients and relatives exhibited abnormally high functional connectivity within the default network. The magnitudes of default network connectivity during rest and task correlated with psychopathology in the patients. Further, during both rest and task, patients exhibited reduced anticorrelations between MPFC and DLPFC, a region that was hyperactivated by patients and relatives during WM performance. Among patients, the magnitude of MPFC task suppression negatively correlated with default connectivity, suggesting an association between the hyperactivation and hyperconnectivity in schizophrenia. Hyperactivation (reduced task-related suppression) of default regions and hyperconnectivity of the default network may contribute to disturbances of thought in schizophrenia and risk for the illness.
NeuroImage | 2010
William S. Kremen; Elizabeth Prom-Wormley; Matthew S. Panizzon; Lisa T. Eyler; Bruce Fischl; Michael C. Neale; Carol E. Franz; Michael J. Lyons; Jennifer Pacheco; Michele E. Perry; Allison Stevens; J. Eric Schmitt; Michael D. Grant; Larry J. Seidman; Heidi W. Thermenos; Ming T. Tsuang; Seth A. Eisen; Anders M. Dale; Christine Fennema-Notestine
The impact of genetic and environmental factors on human brain structure is of great importance for understanding normative cognitive and brain aging as well as neuropsychiatric disorders. However, most studies of genetic and environmental influences on human brain structure have either focused on global measures or have had samples that were too small for reliable estimates. Using the classical twin design, we assessed genetic, shared environmental, and individual-specific environmental influences on individual differences in the size of 96 brain regions of interest (ROIs). Participants were 474 middle-aged male twins (202 pairs; 70 unpaired) in the Vietnam Era Twin Study of Aging (VETSA). They were 51-59 years old, and were similar to U.S. men in their age range in terms of sociodemographic and health characteristics. We measured thickness of cortical ROIs and volume of other ROIs. On average, genetic influences accounted for approximately 70% of the variance in the volume of global, subcortical, and ventricular ROIs and approximately 45% of the variance in the thickness of cortical ROIs. There was greater variability in the heritability of cortical ROIs (0.00-0.75) as compared with subcortical and ventricular ROIs (0.48-0.85). The results did not indicate lateralized heritability differences or greater genetic influences on the size of regions underlying higher cognitive functions. The findings provide key information for imaging genetic studies and other studies of brain phenotypes and endophenotypes. Longitudinal analysis will be needed to determine whether the degree of genetic and environmental influences changes for different ROIs from midlife to later life.
Biological Psychiatry | 2004
Heidi W. Thermenos; Larry J. Seidman; Hans C. Breiter; Jill M. Goldstein; Julie M. Goodman; Russell A. Poldrack; Stephen V. Faraone; Ming T. Tsuang
BACKGROUND First-degree relatives of persons with schizophrenia carry elevated genetic risk for the illness and show deficits on high-load information processing tasks. We used functional magnetic resonance imaging (fMRI) to test whether nonpsychotic relatives show altered functional activation in the prefrontal cortex (PFC), thalamus, hippocampus, and anterior cingulate during a working memory task requiring interference resolution. METHODS Twelve nonpsychotic relatives of persons with schizophrenia and 12 healthy control subjects were administered an auditory, verbal working memory version of the Continuous Performance Test during fMRI. An asymmetric, spin-echo, T2*-weighted sequence (15 contiguous, 7-mm axial slices) was acquired on a full-body MR scanner. Data were analyzed by Statistical Parametric Mapping (SPM). RESULTS Compared with control subjects, relatives showed greater task-elicited activation in the PFC and the anterior and dorsomedial thalamus. When task performance was controlled, relatives showed significantly greater activation in the anterior cingulate. When effects of other potentially confounding variables were controlled, relatives generally showed significantly greater activation in the dorsomedial thalamus and anterior cingulate. CONCLUSIONS This pilot study suggests that relatives of persons with schizophrenia have subtle differences in brain function in the absence of psychosis. These differences add to the growing literature identifying neurobiological vulnerabilities to schizophrenia.
Biological Psychiatry | 2010
Lars M. Rimol; Matthew S. Panizzon; Christine Fennema-Notestine; Lisa T. Eyler; Bruce Fischl; Carol E. Franz; Donald J. Hagler; Michael J. Lyons; Michael C. Neale; Jennifer Pacheco; Michele E. Perry; J. Eric Schmitt; Michael D. Grant; Larry J. Seidman; Heidi W. Thermenos; Ming T. Tsuang; Seth A. Eisen; William S. Kremen; Anders M. Dale
BACKGROUND Although global brain structure is highly heritable, there is still variability in the magnitude of genetic influences on the size of specific regions. Yet, little is known about the patterning of those genetic influences, i.e., whether the same genes influence structure throughout the brain or whether there are regionally specific sets of genes. METHODS We mapped the heritability of cortical thickness throughout the brain using three-dimensional structural magnetic resonance imaging in 404 middle-aged male twins. To assess the amount of genetic overlap between regions, we then mapped genetic correlations between three selected seed points and all other points comprising the continuous cortical surface. RESULTS There was considerable regional variability in the magnitude of genetic influences on cortical thickness. The primary visual (V1) seed point had strong genetic correlations with posterior sensory and motor areas. The anterior temporal seed point had strong genetic correlations with anterior frontal regions but not with V1. The middle frontal seed point had strong genetic correlations with inferior parietal regions. CONCLUSIONS These results provide strong evidence of regionally specific patterns rather than a single, global genetic factor. The patterns are largely consistent with a division between primary and association cortex, as well as broadly defined patterns of brain gene expression, neuroanatomical connectivity, and brain maturation trajectories, but no single explanation appears to be sufficient. The patterns do not conform to traditionally defined brain structure boundaries. This approach can serve as a step toward identifying novel phenotypes for genetic association studies of psychiatric disorders and normal and pathological cognitive aging.
Schizophrenia Research | 2006
Larry J. Seidman; Heidi W. Thermenos; Russell A. Poldrack; Nicole K. Peace; Jennifer K. Koch; Stephen V. Faraone; Ming T. Tsuang
OBJECTIVE Adult first-degree relatives of persons with schizophrenia carry elevated genetic risk for the illness, demonstrate working memory (WM) impairments, and manifest alterations in dorsolateral prefrontal cortical (DLPFC) function during WM. Because substantially less is known about these phenotypes in adolescent subjects we sought to demonstrate that young relatives of persons with schizophrenia manifest impaired WM and altered prefrontal activation. METHODS Participants were 21 non-psychotic, unmedicated first-degree relatives of persons with a DSM-IV diagnosis of schizophrenia or schizoaffective disorder, depressed type and 24 unmedicated controls, recruited from the community and hospitals in metropolitan Boston (ages 13-28). We compared groups on an auditory WM task with interference prior to scanning and used functional magnetic resonance imaging (fMRI) to compare groups while performing visual 2-back WM and control vigilance tasks. Blood oxygen level dependent signal change was measured using two whole-brain gradient echo EPI pulse acquisitions (21 contiguous, 5mm axial slices), acquired on a Siemens 1.5T MR scanner. Data were analyzed using Statistical Parametric Mapping-99. RESULTS The high risk subjects were significantly impaired on the auditory WM task, had significantly greater Phobic Anxiety, and marginally greater Psychoticism than controls on the Symptom Checklist-90-Revised, and showed significantly greater task-elicited activation in the right DLPFC (BA 46). Psychopathology, IQ, and in-scanner WM performance did not account for group differences in brain activation. CONCLUSIONS Data support a physiological difference (an exaggerated fMRI response) in DLPFC in adolescents at genetic risk for schizophrenia, independent of psychosis. Future work can study the relationship of these measures to possible onset of schizophrenia.
Schizophrenia Research | 2005
Heidi W. Thermenos; Jill M. Goldstein; Stephen L. Buka; Russell A. Poldrack; Jennifer K. Koch; Ming T. Tsuang; Larry J. Seidman
INTRODUCTION Studies of prefrontal cortical (PFC) function in schizophrenia have been inconsistent, with studies showing both increased and decreased PFC activation compared to healthy controls. Discrepant findings may be due to task performance effects or demographic differences between samples. We report functional magnetic resonance imaging (fMRI) data comparing subjects with schizophrenia and healthy controls performing a 2-back working memory (WM) task, addressing the effects of task performance. METHODS Twenty-two controls and 14 patients with DSM-IV schizophrenia, scanned on a Siemens 1.5 T scanner, performed a visual letter 2-back task and control task (CPT-X) during fMRI. Data were analyzed using Statistical Parametric Mapping (SPM)-99. RESULTS After statistical adjustment for performance differences, persons with schizophrenia showed significantly greater activation than controls in the right medial frontal gyrus and left inferior parietal lobule/medial temporal gyrus region (BA 39/40), and a trend toward greater activation in the left ventrolateral PFC. This pattern was also observed in demographically matched subgroups of participants. CONCLUSIONS Data are consistent with findings reported in recent studies showing increased PFC and parietal activation in schizophrenia when the effects of reduced WM task performance in patients with schizophrenia are addressed. Further studies are needed to clarify the pathophysiological basis of WM load sensitivity in schizophrenia and its relationship to genes.
American Journal of Medical Genetics | 2009
Heidi W. Thermenos; Jill M. Goldstein; Snezana Milanovic; Susan Whitfield-Gabrieli; Nikos Makris; Peter S. LaViolette; Jennifer K. Koch; Stephen V. Faraone; Ming T. Tsuang; Stephen L. Buka; Larry J. Seidman
First‐degree relatives of persons with bipolar disorders (BDs) carry elevated risk for the illness, and manifest deficits in attention and memory (possible “endophenotypes”). However, there is only one published functional magnetic resonance imaging (fMRI) study of candidate endophenotypes in BD. We used fMRI to examine brain function in BD and in first‐degree relatives performing a 2‐back working memory (WM) task, and correlated brain activity with mood measures taken at the scanning session. Subjects (age 32–46) were 19 persons with BD, 18 unmedicated, non‐psychotic first‐degree relatives (RELs) of persons with BD, and 19 matched controls, ascertained from a long‐term follow‐up of a prenatal cohort study in New England. fMRI signal during 2‐back and 0‐back WM tasks was measured on a Siemens 1.5T MR scanner. fMRI data were analyzed using SPM‐2. Persons with BD and RELs failed to suppress activation in the left anterior insula (BA 13) during WM, whereas controls suppressed activation. Compared to controls, RELs also failed to suppress activation in the orbitofrontal cortex (OFC) and superior parietal cortex. Controls and RELs exhibited greater activation than BD individuals in the left frontopolar cortex (BA 10) during WM. Results remained significant after controlling for confounders except for mild attenuation of OFC findings. Significant correlations between brain activity, mood, and WM suggest that activity in WM circuits is affected by activity in emotion‐regulatory circuits. Persons with BD and RELs exhibit altered activity in the frontopolar cortex and insula, which may represent biomarkers of genetic risk for BD.
Cerebral Cortex | 2011
Lisa T. Eyler; Elizabeth Prom-Wormley; Matthew S. Panizzon; Allison R. Kaup; Christine Fennema-Notestine; Michael C. Neale; Terry L. Jernigan; Bruce Fischl; Carol E. Franz; Michael J. Lyons; Michael D. Grant; Allison Stevens; Jennifer Pacheco; Michele E. Perry; J. Eric Schmitt; Larry J. Seidman; Heidi W. Thermenos; Ming T. Tsuang; Chi-Hua Chen; Wesley K. Thompson; Amy J. Jak; Anders M. Dale; William S. Kremen
Cortical surface area measures appear to be functionally relevant and distinct in etiology, development, and behavioral correlates compared with other size characteristics, such as cortical thickness. Little is known about genetic and environmental influences on individual differences in regional surface area in humans. Using a large sample of adult twins, we determined relative contributions of genes and environment on variations in regional cortical surface area as measured by magnetic resonance imaging before and after adjustment for genetic and environmental influences shared with total cortical surface area. We found high heritability for total surface area and, before adjustment, moderate heritability for regional surface areas. Compared with other lobes, heritability was higher for frontal lobe and lower for medial temporal lobe. After adjustment for total surface area, regionally specific genetic influences were substantially reduced, although still significant in most regions. Unlike other lobes, left frontal heritability remained high after adjustment. Thus, global and regionally specific genetic factors both influence cortical surface areas. These findings are broadly consistent with results from animal studies regarding the evolution and development of cortical patterning and may guide future research into specific environmental and genetic determinants of variation among humans in the surface area of particular regions.
NeuroImage | 2010
William S. Kremen; Robert O'Brien; Matthew S. Panizzon; Elizabeth Prom-Wormley; Lindon J. Eaves; Seth A. Eisen; Lisa T. Eyler; Richard L. Hauger; Christine Fennema-Notestine; Bruce Fischl; Michael D. Grant; Dirk H. Hellhammer; Amy J. Jak; Kristen C. Jacobson; Terry L. Jernigan; Sonia J. Lupien; Michael J. Lyons; Sally P. Mendoza; Michael C. Neale; Larry J. Seidman; Heidi W. Thermenos; Ming T. Tsuang; Anders M. Dale; Carol E. Franz
Although glucocorticoid receptors are highly expressed in the prefrontal cortex, the hippocampus remains the predominant focus in the literature examining relationships between cortisol and brain. We examined phenotypic and genetic associations of cortisol levels with the thickness of prefrontal and anterior cingulate cortex regions, and with hippocampal volume in a sample of 388 middle-aged male twins who were 51-59 years old. Small but significant negative phenotypic associations were found between cortisol levels and the thickness of left dorsolateral (superior frontal gyrus, left rostral middle frontal gyrus) and ventrolateral (pars opercularis, pars triangularis, pars orbitalis) prefrontal regions, and right dorsolateral (superior frontal gyrus) and medial orbital frontal cortex. Most of the associations remained significant after adjusting for general cognitive ability, cardiovascular risk factors, and depression. Bivariate genetic analyses suggested that some of the associations were primarily accounted for by shared genetic influences; that is, some of the genes that tend to result in increased cortisol levels also tend to result in reduced prefrontal cortical thickness. Aging has been associated with reduced efficiency of hypothalamic-pituitary-adrenal function, frontal lobe shrinkage, and increases in health problems, but our present data do not allow us to determine the direction of effects. Moreover, the degree or the direction of the observed associations and the extent of their shared genetic underpinnings may well change as these individuals age. Longitudinal assessments are underway to elucidate the direction of the associations and the genetic underpinnings of longitudinal phenotypes for changes in cortisol and brain morphology.
Schizophrenia Bulletin | 2014
Christian Clemm von Hohenberg; Ofer Pasternak; Marek Kubicki; Thomas Ballinger; Mai-Anh Vu; Tali Swisher; Katie Green; Michelle Y. Giwerc; Brian Dahlben; Jill M. Goldstein; Tsung-Ung W. Woo; Tracey L. Petryshen; Raquelle I. Mesholam-Gately; Kristen A. Woodberry; Heidi W. Thermenos; Christoph Mulert; Robert W. McCarley; Larry J. Seidman; Martha Elizabeth Shenton
BACKGROUND The study of individuals at clinical high risk (CHR) for psychosis provides an important opportunity for unraveling pathological mechanisms underlying schizophrenia and related disorders. A small number of diffusion tensor magnetic resonance imaging (DTI) studies in CHR samples have yielded anatomically inconsistent results. The present study is the first to apply tract-based spatial statistics (TBSS) to perform a whole-brain DTI analysis in CHR subjects. METHODS A total of 28 individuals meeting CHR criteria and 34 healthy controls underwent DTI. TBSS was used for a group comparison of fractional anisotropy (FA), as well as axial, radial, and mean diffusivity (AD, RD, and MD). Conversion to psychosis was monitored during a mean follow-up period of 12.3 months. RESULTS The rate of conversion to psychosis was relatively low (4%). TBSS revealed increased MD in several clusters in the right hemisphere, most notably in the superior longitudinal fasciculus (SLF), posterior corona radiata, and corpus callosum (splenium and body). Increased RD was restricted to a smaller area in the posterior parietal lobe. CONCLUSION We present further evidence that white matter microstructure is abnormal in CHR individuals, even in a sample in which the vast majority do not transition to psychosis over the following year. In accord with previous studies on CHR individuals and patients with early-onset schizophrenia, our findings suggest an important pathological role for the parietal lobe and especially the SLF. The latter is known to undergo particularly dynamic microstructural changes during adolescence and early adulthood, a critical phase for the development of psychotic illness.