Heikki Häkkänen
University of Jyväskylä
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heikki Häkkänen.
Applied Spectroscopy | 1995
Heikki Häkkänen; Jouko Korppi-Tommola
The potential of a laser-generated plasma method in the analysis of coating coverage, coatweight distribution, and 3D distribution of various pigments of paper coating is described. A XeCl-excimer laser (308 nm) was used to generate microscopic plasma from the paper coating, and delayed detection of silicon and calcium atomic emission line intensities was used as a measure of mass vaporized. Macroscopic areas typically 10 × 10 mm2 at a spatial resolution of 250 μm were studied. With a single laser pulse (0.2 mJ of energy), about 2 ng of coating from a volume of 30 μm in diameter and 2 μm in depth was vaporized. The method seems to be useful for characterization of multilayer coatings.
Spectrochimica Acta Part B: Atomic Spectroscopy | 2001
Heikki Häkkänen; J. Houni; Saara Kaski; Jouko Korppi-Tommola
Abstract Material distributions in paper and paper coatings are important factors which determine the characteristics and quality of paper. We have used laser-induced plasma spectroscopy (LIPS) to determine various properties of coated and uncoated papers. Depth profiles of double coated papers were determined. Microscopic variations of pigments in a double-coated paper were analyzed. It was observed, that the two coating layers can be distinguished, if they differ enough in composition. Filler distributions of uncoated copier papers were determined. The surface of the paper was studied for five samples containing different amounts of binder in the coating. Lateral contamination in paper analysis i.e. splash over effect of ablation was studied by varying the sampling distance and number of laser pulses used for ablation. Influence of splash over effect on lateral analysis is briefly discussed.
Acta Biomaterialia | 2015
Miina Ojansivu; Sari Vanhatupa; Leena Björkvik; Heikki Häkkänen; Minna Kellomäki; Reija Autio; Janne A. Ihalainen; Leena Hupa; Susanna Miettinen
Bioactive glasses are known for their ability to induce osteogenic differentiation of stem cells. To elucidate the mechanism of the osteoinductivity in more detail, we studied whether ionic extracts prepared from a commercial glass S53P4 and from three experimental glasses (2-06, 1-06 and 3-06) are alone sufficient to induce osteogenic differentiation of human adipose stem cells. Cells were cultured using basic medium or osteogenic medium as extract basis. Our results indicate that cells stay viable in all the glass extracts for the whole culturing period, 14 days. At 14 days the mineralization in osteogenic medium extracts was excessive compared to the control. Parallel to the increased mineralization we observed a decrease in the cell amount. Raman and Laser Induced Breakdown Spectroscopy analyses confirmed that the mineral consisted of calcium phosphates. Consistently, the osteogenic medium extracts also increased osteocalcin production and collagen Type-I accumulation in the extracellular matrix at 13 days. Of the four osteogenic medium extracts, 2-06 and 3-06 induced the best responses of osteogenesis. However, regardless of the enhanced mineral formation, alkaline phosphatase activity was not promoted by the extracts. The osteogenic medium extracts could potentially provide a fast and effective way to differentiate human adipose stem cells in vitro.
Journal of Analytical Atomic Spectrometry | 2004
Saara Kaski; Heikki Häkkänen; Jouko Korppi-Tommola
Several solid organic compounds containing bromine and chlorine were analyzed with laser-induced plasma spectroscopy. Emission lines were detected in the near vacuum ultraviolet spectral region by using a gas-purged spectrograph and an intensified charge-coupled device detector. The performance of this setup in the determination of the halides in the organic samples was evaluated. Carbon emission lines in the near vacuum ultraviolet were used as internal standards for the measurement of chlorine and bromine. Linear correlation was found between the carbon and halogen emission signal ratio and the corresponding atomic ratio of the compound.
American Mineralogist | 2005
Joachim Lindblom; Jorma Hölsä; Heikki Papunen; Heikki Häkkänen
Abstract The optically active defects in as-grown, high-pressure high-temperature-treated (HPHT), borondoped, and synthetic diamonds (SD) grown with a nitrogen-getter, as well as of natural diamonds (ND), were characterized by absorption and luminescence spectroscopies using different excitation sources. The laser-excited photoluminescence (PL) spectra of SDs show numerous sharp lines characteristic for nickel-related centers, whereas NDs yield mainly broad PL bands. The emission from the nickel-related defects in NIR range increases and the maxima of the bands shift to lower energies with increasing temperature. Under UV and electron beam excitation, the yellow synthetic diamonds display green luminescence patterns along octahedral directions. The UV-excited PL spectra of the yellow SDs show a green band associated with nickel-related optical species. NDs display broad bands centered at ca. 450 nm that are related to complex nitrogen-related aggregates formed in the mantle in a long period of geological time. The cathodoluminescence (CL) spectra of SDs reveal many nickel-related and simple nitrogen-vacancy defects. Differences among as-grown, HPHT, and boron-doped diamonds can be observed. The CL bands of NDs are partly formed or caused by complicated nitrogen aggregates, like N3 and N4 centers. The CL band of NDs shifted from blue to green with increasing irradiation time. The deep-UV (DUV) excited time resolved PL spectra of NDs showed fast-decaying donor-acceptor pair recombination (DAPR) bands at around 410 nm. With longer delay and gate times, the broad band shifted to ca. 435 nm. All synthetic diamonds display luminescence from nickel-related defects centered at ca. 480 and 530 nm at room temperature (RT) and 77 K, respectively, and all SDs had a sharp luminescence band at 694 nm due to a Cr3+ impurity in corundum inclusions.
Optical Materials | 2003
Joachim Lindblom; Jorma Hölsä; Heikki Papunen; Heikki Häkkänen; Jarkko Mutanen
Abstract Laser-excited time-resolved and UV-excited static photoluminescence (PL) as well as cathodoluminescence (CL) techniques were applied to identify the origin of diamonds. Samples represented natural faced and rough diamonds from diamond market and different kimberlites as well as the most common high pressure–high temperature (HPHT) and as-grown synthetic diamonds. The time-resolved PL spectra of natural and synthetic diamonds display clear mutual differences. The static PL and CL spectra of natural diamonds revealed emission bands caused by complex nitrogen–vacancy (N–V)-aggregates whereas the bands of synthetic diamonds reflect simple N–V-aggregates and nickel-containing defects. The luminescence properties depended on the excitation method and also changed during the excitation. The study of PL colors revealed information about the emission distribution of the PL spectra giving possibilities for future applications. The results indicated the sensitivity of luminescence techniques and revealed interesting structural information about diamond materials.
Applied Optics | 2003
Saara Kaski; Heikki Häkkänen; Jouko Korppi-Tommola
An experimental setup is described for measuring laser-induced plasma emission spectra in the near vacuum UV with a Czerny-Turner spectrograph and intensified charge-coupled device under atmospheric pressure. With a simple gas-purge technique, emission lines down to 130 nm could be recorded. The strongest emission lines of bromine, chlorine, and iodine in the near vacuum UV are easily detected.
Applied Spectroscopy | 1993
Heikki Häkkänen; Jouko Korppi-Tommola
Laser-induced fluorescence imaging has been used to study the microstructure of paper surfaces. Pulses from a XeCl-excimer laser, 10 ns in duration at 308 nm, were used for excitation, and fluorescence was collected at 420 nm. The excitation spot diameter was approximately 20 µm, and the sampling interval 0.15 mm. Within an area of 5*5 mm2, 1023 sampling points were recorded to generate 3D fluorescence maps of paper surfaces. Papers containing fluorescence whitening agents (FWAs) gave the highest average fluorescence signals. Coated papers with no FW As show weaker signals than the base sheet. For some thirty different paper samples, an obvious correlation between the amount of coating and the average intensity of the fluorescence signal was observed. Signal fluctuations around the average intensity values were sensitive to (1) the chemical pulp content in super calantered (SC) paper, (2) the amount of recycled fiber in newsprint, and (3) the amount of coating on the light-weight coated (LWC) paper surface. An effort was made to correlate fluorescence imaging results to predict mottling (diffusion of printing ink after printing) in various paper brands.
Journal of Virology | 2014
Päivi Ruokola; Elina Dadu; Artur Kazmertsuk; Heikki Häkkänen; Varpu Marjomäki; Janne A. Ihalainen
ABSTRACT In recent decades, Raman spectroscopy has entered the biological and medical fields. It enables nondestructive analysis of structural details at the molecular level and has been used to study viruses and their constituents. Here, we used Raman spectroscopy to study echovirus 1 (EV1), a small, nonenveloped human pathogen, in two different uncoating states induced by heat treatments. Raman signals of capsid proteins and RNA genome were observed from the intact virus, the uncoating intermediate, and disrupted virions. Transmission electron microscopy data revealed general structural changes between the studied particles. Compared to spectral characteristics of proteins in the intact virion, those of the proteins of the heat-treated particles indicated reduced α-helix content with respect to β-sheets and coil structures. Changes observed in tryptophan and tyrosine signals suggest an increasingly hydrophilic environment around these residues. RNA signals revealed a change in the environment of the genome and in its conformation. The ionized-carbonyl vibrations showed small changes between the intact virion and the uncoating intermediate, which points to cleavage of salt bridges in the protein structure during the uncoating process. In conclusion, our data reveal distinguishable Raman signatures of the intact, intermediate, and disrupted EV1 particles. These changes indicate structural, chemical, and solute-solvent alterations in the genome and in the capsid proteins and lay the essential groundwork for investigating the uncoating of EV1 and related viruses in real time. IMPORTANCE In order to combat virus infection, we need to know the details of virus uncoating. We present here the novel Raman signatures for opened and intact echovirus 1. This gives hope that the signatures may be used in the near future to evaluate the ambient conditions in endosomes leading to virus uncoating using, e.g., coherent anti-Stokes Raman spectroscopy (CARS) imaging. These studies will complement structural studies on virus uncoating. In addition, Raman/CARS imaging offers the possibility of making dynamic live measurements in vitro and in cells which are impossible to measure by, for example, cryo-electron tomography. Furthermore, as viral Raman spectra can be overwhelmed with various contaminants, our study is highly relevant in demonstrating the importance of sample preparation for Raman spectroscopy in the field of virology.
Drying Technology | 2003
Pasi Rajala; Heikki Häkkänen; Carl-Gustav Berg; Richard Solin
Abstract The aim of this study was to find out what will happen to paper coating quality and material gradients if coating is dried in one air dryer at a high convection rate (150 kg/m2h). Different printing papers were coated, calendered and printed with pilot machines. The binder and pigment gradients of the coated, and also printed, samples were analyzed with LIPS (Laser Induced Plasma Spectrometry). It was found that drying affects the migration of starch, but not latex. Total air drying can be used to dry printing papers, if air temperature, velocity and moisture content can be separately controlled. The control of web temperature is more important for paper quality formation in a coater drying section than that of evaporation rate.