Heiko Meyer
Hannover Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heiko Meyer.
PLOS ONE | 2013
Dag Heinemann; Markus Schomaker; Stefan Kalies; Maximilian Schieck; Regina Carlson; Hugo Murua Escobar; Tammo Ripken; Heiko Meyer; Alexander Heisterkamp
Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types.
Optics Express | 2011
Raoul-Amadeus Lorbeer; Marko Heidrich; Christina Lorbeer; Diego Fernando Ramírez Ojeda; Gerd Bicker; Heiko Meyer; Alexander Heisterkamp
Optical Projection Tomography (OPT) proved to be useful for the three-dimensional tracking of fluorescence signals in biological model organisms with sizes up to several millimeters. This tomographic technique detects absorption as well as fluorescence to create multimodal three-dimensional data. While the absorption of a specimen is detected very fast usually less than 0.1% of the fluorescence photons are collected. The low efficiency can result in radiation dose dependent artifacts such as photobleaching and phototoxicity. To minimize these effects as well as artifacts introduced due to the use of a CCD- or CMOS- camera-chip, we constructed a Scanning Laser Optical Tomograph (SLOT). Compared to conventional fluorescence OPT our first SLOT enhanced the photon collection efficiency a hundredfold.
Journal of Biophotonics | 2014
Stefan Kalies; Tobias Birr; Dag Heinemann; Markus Schomaker; Tammo Ripken; Alexander Heisterkamp; Heiko Meyer
The use of laser induced surface plasmons on metal nanoparticles has proven to be an excellent tool for the delivery of molecules like siRNA and DNA into cells. However, a detailed understanding of the basic mechanisms of molecular uptake and the influence of parameters like biological environment is missing. In this study we analyzed the uptake of fluorescent dextrans with sizes from 10 to 2000 kDa, which resembles a wide range of biologically relevant molecules in size using a 532 nm picosecond laser system and 200 nm gold nanoparticles. Our results show a strong uptake-dependence on cell medium or buffer, but no dominant dependence on osmotic conditions. The relation between pulse energy and number of pulses for a given perforation efficiency revealed that multiphoton ionization of water might contribute to perforation. Moreover, a seven-fold uptake-enhancement could be reached with optimized parameters, providing a very promising basis for further studies and applications.
Nanotechnology | 2014
Dag Heinemann; Stefan Kalies; Markus Schomaker; W. Ertmer; H. Murua Escobar; Heiko Meyer; Tammo Ripken
Nanoparticle laser interactions are in widespread use in cell manipulation. In particular, molecular medicine needs techniques for the directed delivery of molecules into mammalian cells. Proteins are the final mediator of most cellular cascades. However, despite several methodical approaches, the efficient delivery of proteins to cells remains challenging. This paper presents a new protein transfection technique via laser scanning of cells previously incubated with gold nanoparticles. The laser-induced plasmonic effects on the gold nanoparticles cause a transient permeabilization of the cellular membrane, allowing proteins to enter the cell. Applying this technique, it was possible to deliver green fluorescent protein into mammalian cells with an efficiency of 43%, maintaining a high level of cell viability. Furthermore, a functional delivery of Caspase 3, an apoptosis mediating protein, was demonstrated and evaluated in several cellular assays. Compared to conventional protein transfection techniques such as microinjection, the methodical approach presented here enables high-throughput transfection of about 10 000 cells per second. Moreover, a well-defined point in time of delivery is guaranteed by gold nanoparticle mediated laser transfection, allowing the detailed temporal analysis of cellular pathways and protein trafficking.
Journal of Nanobiotechnology | 2015
Markus Schomaker; Dag Heinemann; Stefan Kalies; Saskia Willenbrock; Siegfried Wagner; Ingo Nolte; Tammo Ripken; Hugo Murua Escobar; Heiko Meyer; Alexander Heisterkamp
BackgroundIn molecular medicine, the manipulation of cells is prerequisite to evaluate genes as therapeutic targets or to transfect cells to develop cell therapeutic strategies. To achieve these purposes it is essential that given transfection techniques are capable of handling high cell numbers in reasonable time spans. To fulfill this demand, an alternative nanoparticle mediated laser transfection method is presented herein. The fs-laser excitation of cell-adhered gold nanoparticles evokes localized membrane permeabilization and enables an inflow of extracellular molecules into cells.ResultsThe parameters for an efficient and gentle cell manipulation are evaluated in detail. Efficiencies of 90% with a cell viability of 93% were achieved for siRNA transfection. The proof for a molecular medical approach is demonstrated by highly efficient knock down of the oncogene HMGA2 in a rapidly proliferating prostate carcinoma in vitro model using siRNA. Additionally, investigations concerning the initial perforation mechanism are conducted. Next to theoretical simulations, the laser induced effects are experimentally investigated by spectrometric and microscopic analysis. The results indicate that near field effects are the initial mechanism of membrane permeabilization.ConclusionThis methodical approach combined with an automated setup, allows a high throughput targeting of several 100,000 cells within seconds, providing an excellent tool for in vitro applications in molecular medicine. NIR fs lasers are characterized by specific advantages when compared to lasers employing longer (ps/ns) pulses in the visible regime. The NIR fs pulses generate low thermal impact while allowing high penetration depths into tissue. Therefore fs lasers could be used for prospective in vivo applications.
Journal of Biophotonics | 2015
Markus Schomaker; Doreen Killian; Saskia Willenbrock; Dag Heinemann; Stefan Kalies; Anaclet Ngezahayo; Ingo Nolte; Tammo Ripken; Christian Junghanß; Heiko Meyer; Hugo Murua Escobar; Alexander Heisterkamp
Gold nanoparticle mediated (GNOME) laser transfection is a powerful technique to deliver small biologically relevant molecules into cells. However, the transfection of larger and especially negatively charged DNA remains challenging. The efficiency for pDNA was 0.57% using parameter that does not influence the endo- and exogenous DNA. In order to gain a deeper understanding of the actual molecule uptake process, the uptake efficiency was determined using molecules of different sizes. It was evaluated that uncharged dextran molecules (2000 kDa) were delivered with an efficiency of 68%. The intracellular distribution of injected molecules was visualized and larger molecules were primary found in the cytoplasm. Patch clamp measurements suggested a permeabilization time up to 15 minutes. The uptake efficiency depended on the size and charge of the molecule to deliver as well as the cell size. A minor role for transfection plays the cell type since primary stem cells were successfully transfected. The perforation efficiency of semi-adherent and suspension cells is influenced by the cell and molecule size.
Journal of Biophotonics | 2014
Stefan Kalies; Dag Heinemann; Markus Schomaker; Hugo Murua Escobar; Alexander Heisterkamp; Tammo Ripken; Heiko Meyer
Several cell transfection techniques have been developed in the last decades for specific applications and for various types of molecules. In this context, laser based approaches are of great interest due to their minimal invasiveness and spatial selectivity. In particular, laser induced plasmon based delivery of exogenous molecules into cells can have great impact on future applications. This approach allows high-throughput laser transfection by excitation of plasmon resonances at gold nanoparticles non-specifically attached to the cell membrane. In this study, we demonstrate specific gene-knockdown by transfection of Morpholino oligos using this technique with optimized particle size. Furthermore, we evaluated the cytotoxicity of plasmonic laser treatment by various assays, including LDH activity and ROS formation. In summary, this study gives important insights into this new approach and clearly demonstrates its relevance for possible biological applications.
PLOS ONE | 2014
Ulrike Boeer; Falk F. R. Buettner; Melanie Klingenberg; Georgios C. Antonopoulos; Heiko Meyer; Axel Haverich; Mathias Wilhelmi
The limited biocompatibility of decellularized scaffolds is an ongoing challenge in tissue engineering. Here, we demonstrate the residual immunogenicity of an extensively decellularized equine carotid artery (dEACintens) and identify the involved immunogenic components. EAC were submitted to an elaborated intensified decellularization protocol with SDS/sodium desoxycholate for 72 h using increased processing volumes (dEACintens), and compared to dEACord prepared by an ordinary protocol (40 h, normal volumes). Matrix integrity was checked via correlative volumetric visualization which revealed only minor structural changes in the arterial wall. In dEACintens, a substantial depletion of cellular components was obvious for smooth muscle actin (100%), MHC I complexes (97.8%), alphaGal epitops (98.4% and 91.3%) and for DNA (final concentration of 0.34±0.16 ng/mg tissue). However, dEACintens still evoked antibody formation in mice after immunization with dEACintens extracts, although to a lower extent than dEACord. Mouse plasma antibodies recognized a 140 kDa band which was revealed to contain collagen VI alpha1 and alpha2 chains via mass spectrometry of both 2D electrophoretically separated and immunoprecipitated proteins. Thus, even the complete removal of cellular proteins did not yield non-immunogenic dEAC as the extracellular matrix still conferred immunogenicity by collagen VI. However, as lower antibody levels were achieved by the intensified decellularization protocol, this seems to be a promising basis for further development.
Optics Express | 2011
K. Kuetemeyer; George Kensah; Marko Heidrich; Heiko Meyer; Ulrich Martin; Ina Gruh; Alexander Heisterkamp
Cardiac tissue engineering is a promising strategy for regenerative therapies to overcome the shortage of donor organs for transplantation. Besides contractile function, the stiffness of tissue engineered constructs is crucial to generate transplantable tissue surrogates with sufficient mechanical stability to withstand the high pressure present in the heart. Although several collagen cross-linking techniques have proven to be efficient in stabilizing biomaterials, they cannot be applied to cardiac tissue engineering, as cell death occurs in the treated area. Here, we present a novel method using femtosecond (fs) laser pulses to increase the stiffness of collagen-based tissue constructs without impairing cell viability. Raster scanning of the fs laser beam over riboflavin-treated tissue induced collagen cross-linking by two-photon photosensitized singlet oxygen production. One day post-irradiation, stress-strain measurements revealed increased tissue stiffness by around 40% being dependent on the fibroblast content in the tissue. At the same time, cells remained viable and fully functional as demonstrated by fluorescence imaging of cardiomyocyte mitochondrial activity and preservation of active contraction force. Our results indicate that two-photon induced collagen cross-linking has great potential for studying and improving artificially engineered tissue for regenerative therapies.
PLOS ONE | 2015
Stefan Kalies; Georgios C. Antonopoulos; Mirko Sebastian Rakoski; Dag Heinemann; Markus Schomaker; Tammo Ripken; Heiko Meyer
Laser based cell manipulation has proven to be a versatile tool in biomedical applications. In this context, combining weakly focused laser pulses and nanostructures, e.g. gold nanoparticles, promises to be useful for high throughput cell manipulation, such as transfection and photothermal therapy. Interactions between laser pulses and gold nanoparticles are well understood. However, it is still necessary to study cell behavior in gold nanoparticle mediated laser manipulation. While parameters like cell viability or perforation efficiency are commonly addressed, the influence of the manipulation process on other essential cell parameters is not sufficiently investigated yet. Thus, we set out to study four relevant cell properties: cell volume and area, ion exchange and cytoskeleton structure after gold nanoparticle based laser manipulation. For this, we designed a multimodal imaging and manipulation setup. 200 nm gold nanoparticles were attached unspecifically to canine cells and irradiated by weakly focused 850 ps laser pulses. Volume and area change in the first minute post laser manipulation was monitored using digital holography. Calcium imaging and cells expressing a marker for filamentous actin (F-actin) served to analyze the ion exchange and the cytoskeleton, respectively. High radiant exposures led to cells exhibiting a tendency to shrink in volume and area, possibly due to outflow of cytoplasm. An intracellular raise in calcium was observed and accompanied by an intercellular calcium wave. This multimodal approach enabled for the first time a comprehensive analysis of the cell behavior in gold nanoparticle mediated cell manipulation. Additionally, this work can pave the way for a better understanding and the evaluation of new applications in the context of cell transfection or photothermal therapy.