Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heiman Wang is active.

Publication


Featured researches published by Heiman Wang.


Journal of Virology | 2001

Phylogenetic and evolutionary relationships among yellow fever virus isolates in Africa.

John-Paul Mutebi; Heiman Wang; Li Li; Juliet E. Bryant; Alan D. T. Barrett

ABSTRACT Previous studies with a limited number of strains have indicated that there are two genotypes of yellow fever (YF) virus in Africa, one in west Africa and the other in east and central Africa. We have examined the prM/M and a portion of the E protein for a panel of 38 wild strains of YF virus from Africa representing different countries and times of isolation. Examination of the strains revealed a more complex genetic relationship than previously reported. Overall, nucleotide substitutions varied from 0 to 25.8% and amino acid substitutions varied from 0 to 9.1%. Phylogenetic analysis using parsimony and neighbor-joining algorithms identified five distinct genotypes: central/east Africa, east Africa, Angola, west Africa I, and west Africa II. Extensive variation within genotypes was observed. Members of west African genotype II and central/east African genotype differed by 2.8% or less, while west Africa genotype I varied up to 6.8% at the nucleotide level. We speculate that the former two genotypes exist in enzootic transmission cycles, while the latter is genetically more heterogeneous due to regular human epidemics. The nucleotide sequence of the Angola genotype diverged from the others by 15.7 to 23.0% but only 0.4 to 5.6% at the amino acid level, suggesting that this genotype most likely diverged from a progenitor YF virus in east/central Africa many years ago, prior to the separation of the other east/central African strains analyzed in this study, and has evolved independently. These data demonstrate that there are multiple genotypes of YF virus in Africa and suggest independent evolution of YF virus in different areas of Africa.


Journal of General Virology | 2001

Phylogeny of the Simbu serogroup of the genus Bunyavirus

Mohammad Saeed; Li Li; Heiman Wang; Scott C. Weaver; Alan D. T. Barrett

The Simbu serogroup of the genus Bunyavirus, family Bunyaviridae contains 25 viruses. Previous serological studies provided important information regarding some but not all of the relationships among Simbu serogroup viruses. This report describes the nucleotide sequence determination of the nucleocapsid (N) gene of the small genomic segment of 14 Simbu serogroup viruses and partial nucleotide sequence determination of the G2 glycoprotein-coding region (encoded by the medium RNA segment) of 19 viruses. The overall phylogeny of the Simbu serogroup inferred from analyses of the N gene was similar to that inferred from analyses of the G2 protein-coding region. Both analyses revealed that the Simbu serogroup viruses have evolved into at least five major phylogenetic lineages. In general, these phylogenetic lineages were consistent with the previous serological data, but provided a more detailed understanding of the relatedness amongst many viruses. In comparison to previous phylogenetic studies on the California and Bunyamwera serogroups of the Bunyavirus genus, the Simbu serogroup displays much larger genetic variation in the N gene (up to 40% amino acid sequence divergence).


Journal of General Virology | 2000

Nucleotide sequences and phylogeny of the nucleocapsid gene of Oropouche virus

Mohammad Saeed; Heiman Wang; Márcio Roberto Teixeira Nunes; Pedro Fernando da Costa Vasconcelos; Scott C. Weaver; Robert E. Shope; Douglas M. Watts; Robert B. Tesh; Alan D. T. Barrett

The nucleotide sequence of the S RNA segment of the Oropouche (ORO) virus prototype strain TRVL 9760 was determined and found to be 754 nucleotides in length. In the virion-complementary orientation, the RNA contained two overlapping open reading frames of 693 and 273 nucleotides that were predicted to encode proteins of 231 and 91 amino acids, respectively. Subsequently, the nucleotide sequences of the nucleocapsid genes of 27 additional ORO virus strains, representing a 42 year interval and a wide geographical range in South America, were determined. Phylogenetic analyses revealed that all the ORO virus strains formed a monophyletic group that comprised three distinct lineages. Lineage I contained the prototype strain from Trinidad and most of the Brazilian strains, lineage II contained six Peruvian strains isolated between 1992 and 1998, and two strains from western Brazil isolated in 1991, while lineage III comprised four strains isolated in Panama during 1989.


Virus Research | 2001

Jatobal virus is a reassortant containing the small RNA of Oropouche virus

Mohammad Saeed; Heiman Wang; Miguel T. Suderman; David W. C. Beasley; Amelia Travassos da Rosa; Li Li; Robert E. Shope; Robert B. Tesh; Alan D. T. Barrett

Jatobal (JAT) virus was isolated in 1985 from a carnivore (Nasua nasua) in Tucuruí, Pará state, Brazil and was classified as a distinct member of the Simbu serogroup of the Bunyavirus genus, family Bunyaviridae on the basis of neutralization tests. On the basis of nucleotide sequencing, we have found that the small (S) RNA of JAT virus is very similar (>95% identity) to that of Oropouche (ORO) virus, in particular, the Peruvian genotype of ORO virus. In comparison, limited nucleotide sequencing of the G2 protein gene, encoded by the middle (M) RNA, of JAT and ORO viruses, revealed relatively little identity (<66%) between these two viruses. Neutralization tests confirmed the lack of cross-reactivity between the viruses. These results suggest that JAT virus is a reassortant containing the S RNA of ORO virus. JAT virus was attenuated in hamsters compared to ORO virus suggesting that the S RNA of ORO virus is not directly involved in hamster virulence.


Emerging Infectious Diseases | 2003

Enzootic Transmission of Yellow Fever Virus in Peru

Juliet E. Bryant; Heiman Wang; Cesar Cabezas; Gladys Ramirez; Douglas M. Watts; Kevin L. Russell; Alan D. T. Barrett

The prevailing paradigm of yellow fever virus (YFV) ecology in South America is that of wandering epizootics. The virus is believed to move from place to place in epizootic waves involving monkeys and mosquitoes, rather than persistently circulating within particular locales. After a large outbreak of YFV illness in Peru in 1995, we used phylogenetic analyses of virus isolates to reexamine the hypothesis of virus movement. We sequenced a 670-nucleotide fragment of the prM/E gene region of from 25 Peruvian YFV samples collected from 1977 to 1999, and delineated six clades representing the states (Departments) of Puno, Pasco, Junin, Ayacucho, San Martin/Huanuco, and Cusco. The concurrent appearance of at least four variants during the 1995 epidemic and the genetic stability of separate virus lineages over time, indicate that Peruvian YFV is locally maintained and circulates continuously in discrete foci of enzootic transmission.


Journal of Virology | 2004

Genetic Relationships and Evolution of Genotypes of Yellow Fever Virus and Other Members of the Yellow Fever Virus Group within the Flavivirus Genus Based on the 3′ Noncoding Region

John Paul Mutebi; Rene Rijnbrand; Heiman Wang; Kate D. Ryman; Eryu Wang; Lynda D. Fulop; Richard W. Titball; Alan D. T. Barrett

ABSTRACT Genetic relationships among flaviviruses within the yellow fever (YF) virus genetic group were investigated by comparing nucleotide sequences of the 3′ noncoding region (3′NCR). Size heterogeneity was observed between members and even among strains of the same viral species. Size variation between YF strains was due to duplications and/or deletions of repeated nucleotide sequence elements (RYF). West African genotypes had three copies of the RYF (RYF1, RYF2, and RYF3); the Angola and the East and Central African genotypes had two copies (RYF1 and RYF3); and South American genotypes had only a single copy (RYF3). Nucleotide sequence analyses suggest a deletion within the 3′NCR of South American genotypes, including RYF1 and RYF2. Based on studies with the French neurotropic vaccine strain, passage of a YF virus strain in cell culture can result in deletion of RYF1 and RYF2. Taken together, these observations suggest that South American genotypes of YF virus evolved from West African genotypes and that the South American genotypes lost RYF1 and RYF2, possibly in a single event. Repeated sequence elements were found within the 3′NCR of other members of the YF virus genetic group, suggesting that it is probably characteristic for members of the YF virus genetic group. A core sequence of 15 nucleotides, containing two stem-loops, was found within the 3′NCR of all members of the YF genetic group and may represent the progenitor repeat sequence. Secondary structure predictions of the 3′NCR showed very similar structures for viruses that were closely related phylogenetically.


Journal of Virology | 2000

Interaction of Yellow Fever Virus French Neurotropic Vaccine Strain with Monkey Brain: Characterization of Monkey Brain Membrane Receptor Escape Variants

Haolin Ni; Kate D. Ryman; Heiman Wang; Mohammad Saeed; Robin Hull; D.J. Wood; Philip D. Minor; Stanley J. Watowich; Alan D. T. Barrett

ABSTRACT Binding of yellow fever virus wild-type strains Asibi and French viscerotropic virus and vaccine strains 17D and FNV to monkey brain and monkey liver cell membrane receptor preparations (MRPs) was investigated. Only FNV bound to monkey brain MRPs, while French viscerotropic virus, Asibi, and FNV all bound to monkey liver MRPs. Four monkey brain and two mouse brain MRP escape (MRPR) variants of FNV were selected at pH 7.6 and 6.0. Three monkey brain MRPR variants selected at pH 7.6 each had only one amino acid substitution in the envelope (E) protein in domain II (E-237, E-260, or E274) and were significantly attenuated in mice following intracerebral inoculation. Two of the variants were tested in monkeys and retained parental neurotropism following intracerebral inoculation at the dose tested. We speculate that this region of domain II is involved in binding of FNV E protein to monkey brain and is, in part, responsible for the enhanced neurotropism of FNV for monkeys. A monkey brain MRPR variant selected at pH 6.0 and two mouse brain MRPR variants selected at pH 7.6 were less attenuated in mice, and each had an amino acid substitution in the transmembrane region of the E protein (E-457 or E-458).


Virus Research | 2001

Nucleotide sequence and deduced amino acid sequence of the medium RNA segment of Oropouche, a Simbu serogroup virus: Comparison with the middle RNA of Bunyamwera and California serogroup viruses

Heiman Wang; David W. C. Beasley; Li Li; Alan D. T. Barrett

The Bunyavirus genus of the family Bunyaviridae contains 18 serogroups. To date nucleotide sequence data has been obtained for three serogroups, Bunyamwera, California and Simbu, based on analysis of the small (S) RNA segment. In comparison, there is only nucleotide sequence data for the large and medium (M) RNA segments for members of the Bunyamwera and California serogroups. In this paper we report the nucleotide sequence of the M RNA of Oropouche (ORO) virus, a member of the Simbu serogroup. The M RNA was 4396 nucleotides in length with G1, G2 and NSm proteins similar in size to those reported for members of the Bunyamwera and California serogroups. However, there was limited nucleotide (50-52%) and amino acid (30-32%) homology between ORO virus M RNA and those of published members of the other two serogroups. The Bunyamwera and California serogroups are more closely related to each other than the Simbu serogroup virus Oropouche. These data were consistent with that previously reported for the S RNA (Saeed et al., 2000. J. Gen. Virol. 81, 743-748). It has been noted previously that three of four potential N-linked glycosylation sites of the Bunayamwera and California serogroups are conserved in G1 and G2 proteins. In contrast, ORO virus was found to have only three potential N-linked glycosylation sites of which only one, in G1, was conserved with members of the other two serogroups. Comparison of M RNA sequences of different strains of ORO virus revealed genetic variation consistent with that reported previously for the S RNA.


Journal of Virology | 2001

Langat Virus M Protein Is Structurally Homologous to prM

Heiman Wang; Alan D. T. Barrett

ABSTRACT Langat (LGT) virus M protein has been generated in a recombinant system. Antiserum raised against the LGT virus M protein neutralizes tick-borne encephalitis serocomplex flaviviruses but not mosquito-borne flaviviruses, indicating that the M protein is exposed on the surface of virions. The antiserum recognizes intracellular LGT virus prM/M and binds to prM and M in Western blots of whole-cell lysates and purified virus, respectively. These data suggest that the prM and M proteins are structurally similar under native conditions and support the hypothesis that the “pr” portion of prM facilitates proper folding of the M protein for expression on the virion surface.


Journal of Microbiological Methods | 1998

Expression of an 18 kDa::PhoA fusion protein in Mycobacterium spp.

Christopher W. Robb; Haolin Ni; Heiman Wang; Alan D. T. Barrett; David W. Niesel

Abstract Recent advances with mycobacterial vectors hold promise for the development of recombinant mycobacterial vaccines. Production of heterologous proteins by mycobacteria can elicit strong cellular and humoral immune responses. Importantly, expression of proteins at the surface of Mycobacterium spp. results in significant humoral responses as compared to those against cytoplasmic proteins. We have developed pCR7, a plasmid vector that expresses the M . leprae 18 kDa antigen fused in-frame to E. coli alkaline phosphatase (PhoA). The fusion sequence is flanked by insertion sequence (IS900) elements, allowing stable integration into the mycobacterial chromosome. A 59-kDa protein, the predicted size of the fusion product, was detectable by immunoblotting with monoclonal antibody to PhoA and to the 18 kDa antigen. M. smegmatis and M. vaccae transformed with pCR7 exhibited alkaline phosphatase (PhoA) activity, indicating transport of the heterologous protein across the mycobacterial membrane. pCR7 transformants: (a) had a single copy of the gene construct, (b) varied in the level of PhoA activity and (c) were cultivated stably in the absence of antibiotic pressure. Furthermore, production of the 18 kDa::PhoA fusion protein in pCR7 transformants was significantly enhanced during intracellular incubation in J774 macrophage monolayers. Thus, pCR7 may offer several advantages as a recombinant vaccine vector. Target antigens can be expressed in-frame with the 18 kDa::PhoA construct. Such recombinant Mycobacterium spp. would express the target antigen at the mycobacterial surface, co-express the immunostimulatory M. leprae 18 kDa sequences, and allow enhanced production of target antigens in vivo. Importantly, production of heterologous proteins could be verified by screening for PhoA activity, providing a potential alternative to antibiotic selection.

Collaboration


Dive into the Heiman Wang's collaboration.

Top Co-Authors

Avatar

Alan D. T. Barrett

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Li Li

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Haolin Ni

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Kate D. Ryman

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Mohammad Saeed

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

David W. C. Beasley

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Douglas M. Watts

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar

Eryu Wang

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Miguel T. Suderman

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Scott C. Weaver

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge