Haolin Ni
University of Texas Medical Branch
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Haolin Ni.
Journal of Virology | 2003
Tom Solomon; Haolin Ni; David W. C. Beasley; Miquel Ekkelenkamp; Mary Jane Cardosa; Alan D. T. Barrett
ABSTRACT Since it emerged in Japan in the 1870s, Japanese encephalitis has spread across Asia and has become the most important cause of epidemic encephalitis worldwide. Four genotypes of Japanese encephalitis virus (JEV) are presently recognized (representatives of genotypes I to III have been fully sequenced), but its origin is not known. We have determined the complete nucleotide and amino acid sequence of a genotype IV Indonesian isolate (JKT6468) which represents the oldest lineage, compared it with other fully sequenced genomes, and examined the geographical distribution of all known isolates. JKT6468 was the least similar, with nucleotide divergence ranging from 17.4 to 19.6% and amino acid divergence ranging from 4.7 to 6.5%. It included an unusual series of amino acids at the carboxy terminus of the core protein unlike that seen in other JEV strains. Three signature amino acids in the envelope protein (including E327 Leu→Thr/Ser on the exposed lateral surface of the putative receptor binding domain) distinguished genotype IV strains from more recent genotypes. Analysis of all 290 JEV isolates for which sequence data are available showed that the Indonesia-Malaysia region has all genotypes of JEV circulating, whereas only more recent genotypes circulate in other areas (P < 0.0001). These results suggest that JEV originated from its ancestral virus in the Indonesia-Malaysia region and evolved there into the different genotypes which then spread across Asia. Our data, together with recent evidence on the origins of other emerging viruses, including dengue virus and Nipah virus, imply that tropical southeast Asia may be an important zone for emerging pathogens.
Journal of Virology | 2000
Eryu Wang; Haolin Ni; Renling Xu; Alan D. T. Barrett; Stanley J. Watowich; Duane J. Gubler; Scott C. Weaver
ABSTRACT Endemic/epidemic dengue viruses (DEN) that are transmitted among humans by the mosquito vectors Aedes aegypti andAedes albopictus are hypothesized to have evolved from sylvatic DEN strains that are transmitted among nonhuman primates in West Africa and Malaysia by other Aedes mosquitoes. We tested this hypothesis with phylogenetic studies using envelope protein gene sequences of both endemic/epidemic and sylvatic strains. The basal position of sylvatic lineages of DEN-1, -2, and -4 suggested that the endemic/epidemic lineages of these three DEN serotypes evolved independently from sylvatic progenitors. Time estimates for evolution of the endemic/epidemic forms ranged from 100 to 1,500 years ago, and the evolution of endemic/epidemic forms represents relatively recent events in the history of DEN evolution. Analysis of envelope protein amino acid changes predicted to have accompanied endemic/epidemic emergence suggested a role for domain III in adaptation to new mosquito and/or human hosts.
Journal of General Virology | 1995
Haolin Ni; Gwong-Jen J. Chang; Hong Xie; Dennis W. Trent; Alan D. T. Barrett
To identify the molecular determinants for attenuation of wild-type Japanese encephalitis (JE) virus strain SA14, the RNA genome of wild-type strain SA14 and its attenuated vaccine virus SA14-2-8 were reverse transcribed, amplified by PCR and sequenced. Comparison of the nucleotide sequence of SA14-2-8 vaccine virus with virulent parent SA14 virus and with two other attenuated vaccine viruses derived from SA14 virus (SA14-14-2/PHK and SA14-14-2/PDK) revealed only seven amino acids in the virulent parent SA14 had been substituted in all three attenuated vaccines. Four were in the envelope (E) protein (E-138, E-176, E-315 and E-439), one in non-structural protein 2B (NS2B-63), one in NS3 (NS3-105), and one in NS4B (NS4B-106). The substitutions at E-315 and E-439 arose due to correction of the SA14/CDC sequence published previously by Nitayaphan et al. (Virology 177, 541-552, 1990). The mutations in NS2B and NS3 are in functional domains of the trypsin-like serine protease. Attenuation of SA14 virus may therefore, in part, be due to alterations in viral protease activity, which could affect replication of the virus.
Journal of Virology | 2006
Slobodan Paessler; Haolin Ni; Olga Petrakova; Rafik Fayzulin; Nadezhda E. Yun; Michael Anishchenko; Scott C. Weaver; Ilya Frolov
ABSTRACT Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic pathogen. Recent outbreaks in Venezuela and Colombia in 1995, involving an estimated 100,000 human cases, indicate that VEEV still poses a serious public health threat. To develop a safe, efficient vaccine that protects against disease resulting from VEEV infection, we generated chimeric Sindbis (SIN) viruses expressing structural proteins of different strains of VEEV and analyzed their replication in vitro and in vivo, as well as the characteristics of the induced immune responses. None of the chimeric SIN/VEE viruses caused any detectable disease in adult mice after either intracerebral (i.c.) or subcutaneous (s.c.) inoculation, and all chimeras were more attenuated than the vaccine strain, VEEV TC83, in 6-day-old mice after i.c. infection. All vaccinated mice were protected against lethal encephalitis following i.c., s.c., or intranasal (i.n.) challenge with the virulent VEEV ZPC738 strain (ZPC738). In spite of the absence of clinical encephalitis in vaccinated mice challenged with ZPC738 via i.n. or i.c. route, we regularly detected high levels of infectious challenge virus in the central nervous system (CNS). However, infectious virus was undetectable in the brains of all immunized animals at 28 days after challenge. Hamsters vaccinated with chimeric SIN/VEE viruses were also protected against s.c. challenge with ZPC738. Taken together, our findings suggest that these chimeric SIN/VEE viruses are safe and efficacious in adult mice and hamsters and are potentially useful as VEEV vaccines. In addition, immunized animals provide a useful model for studying the mechanisms of the anti-VEEV neuroinflammatory response, leading to the reduction of viral titers in the CNS and survival of animals.
Journal of General Virology | 1995
Jing X. Cao; Haolin Ni; Mark R. Wills; Gerald A. Campbell; Bijon K. Sil; Kate D. Ryman; Ian Kitchen; Alan D. T. Barrett
Of four wild-type strains (Nakayama-original, SA14, 826309 and Beijing-1) of Japanese encephalitis (JE) virus that were passaged six times in HeLa cells (HeLa p6), two (Nakayama-original and 826309) became attenuated for mice. In the case of strain Nakayama-original, the virulence for mice was markedly reduced and attenuation was retained on passage in primary chicken embryo fibroblast, LLC-MK2 and C6/36 cells. The binding of non-HeLa-passaged Nakayama virus to mouse brain membrane receptor preparations could be differentiated from binding by Nakayama HeLa p6 virus, suggesting that the envelope (E) protein is involved in the attenuated phenotype. Both of the attenuated viruses can be distinguished from the virulent non-HeLa-passaged parental viruses by examination with E protein reactive vaccine and wild-type-specific monoclonal antibodies (MAbs). The vaccine-specific MAb V23, which is only reactive with the SA14 series of live vaccine viruses, recognized the HeLa cell-attenuated Nakayama-original and 826309 viruses, whereas two wild-type-specific MAbs (MAbs K13 and K39) lost reactivity. Comparison of the nucleotide sequences of the structural protein genes of the 826309 and Nakayama-original virulent parent and attenuated HeLa p6 viruses revealed that the viruses differed by 37 and 46 nucleotides coding for eight and nine amino acid mutations, respectively. However, other than one amino acid in the E protein, the membrane and E protein amino acid sequences of the two attenuated HeLa p6 viruses were identical.
Virology | 2008
Slobodan Paessler; Rene Rijnbrand; David A. Stein; Haolin Ni; Nadezhda E. Yun; Natallia Dziuba; Viktoriya Borisevich; Alexey Seregin; Yinghong Ma; Robert Blouch; Patrick L. Iversen; Michele A. Zacks
Abstract The genus Alphavirus contains members that threaten human health, both as natural pathogens and as potential biological weapons. Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMO) enter cells readily and can inhibit viral replication through sequence-specific steric blockade of viral RNA. Sindbis virus (SINV) has low pathogenicity in humans and is regularly utilized as a model alphavirus. PPMO targeting the 5′-terminal and AUG translation start site regions of the SINV genome blocked the production of infectious SINV in tissue culture. PPMO designed against corresponding regions in Venezuelan equine encephalitis virus (VEEV) were likewise found to be effective in vitro against several strains of VEEV. Mice treated with PPMO before and after VEEV infection were completely protected from lethal outcome while mice receiving only post-infection PPMO treatment were partially protected. Levels of virus in tissue samples correlated with animal survival. Uninfected mice suffered no apparent ill-effects from PPMO treatment. Thus, PPMO appear promising as candidates for therapeutic development against alphaviruses.
Journal of Clinical Microbiology | 2006
Eryu Wang; Slobodan Paessler; Patricia V. Aguilar; Anne-Sophie Carrara; Haolin Ni; Ivorlyne P. Greene; Scott C. Weaver
ABSTRACT Due to the lack of a rapid, simple, and inexpensive assay for detecting alphavirus infections, we combined a reverse transcription-PCR with an enzyme-linked immunosorbent assay (RT-PCR-ELISA) to identify human pathogenic alphaviruses that are endemic in the New World. By combining the sensitivity of PCR, the detection simplicity of ELISA, and the specificities of DNA probes, this method rapidly detected and differentiated closely related species and subtypes of several medically important alphaviruses. After an amplification using RT-PCR with primers targeting conserved sequences in the nonstructural protein 1 gene, sequence-specific, biotin-labeled probes targeted against Venezuelan, eastern, and western equine encephalitis or Mayaro virus genes were used for the detection of amplicons using ELISA. The assay is simple, fast, and easy to perform in an ordinary diagnostic laboratory or clinical setting. Nucleic acid derived from cell cultures infected with several alphaviruses, clinical specimens, and mosquito pools as well as frozen and paraffin-embedded animal tissues were detected and identified within 6 to 7 h in a sensitive and specific manner.
Journal of Virology | 2000
Haolin Ni; Kate D. Ryman; Heiman Wang; Mohammad Saeed; Robin Hull; D.J. Wood; Philip D. Minor; Stanley J. Watowich; Alan D. T. Barrett
ABSTRACT Binding of yellow fever virus wild-type strains Asibi and French viscerotropic virus and vaccine strains 17D and FNV to monkey brain and monkey liver cell membrane receptor preparations (MRPs) was investigated. Only FNV bound to monkey brain MRPs, while French viscerotropic virus, Asibi, and FNV all bound to monkey liver MRPs. Four monkey brain and two mouse brain MRP escape (MRPR) variants of FNV were selected at pH 7.6 and 6.0. Three monkey brain MRPR variants selected at pH 7.6 each had only one amino acid substitution in the envelope (E) protein in domain II (E-237, E-260, or E274) and were significantly attenuated in mice following intracerebral inoculation. Two of the variants were tested in monkeys and retained parental neurotropism following intracerebral inoculation at the dose tested. We speculate that this region of domain II is involved in binding of FNV E protein to monkey brain and is, in part, responsible for the enhanced neurotropism of FNV for monkeys. A monkey brain MRPR variant selected at pH 6.0 and two mouse brain MRPR variants selected at pH 7.6 were less attenuated in mice, and each had an amino acid substitution in the transmembrane region of the E protein (E-457 or E-458).
Journal of Microbiological Methods | 1998
Christopher W. Robb; Haolin Ni; Heiman Wang; Alan D. T. Barrett; David W. Niesel
Abstract Recent advances with mycobacterial vectors hold promise for the development of recombinant mycobacterial vaccines. Production of heterologous proteins by mycobacteria can elicit strong cellular and humoral immune responses. Importantly, expression of proteins at the surface of Mycobacterium spp. results in significant humoral responses as compared to those against cytoplasmic proteins. We have developed pCR7, a plasmid vector that expresses the M . leprae 18 kDa antigen fused in-frame to E. coli alkaline phosphatase (PhoA). The fusion sequence is flanked by insertion sequence (IS900) elements, allowing stable integration into the mycobacterial chromosome. A 59-kDa protein, the predicted size of the fusion product, was detectable by immunoblotting with monoclonal antibody to PhoA and to the 18 kDa antigen. M. smegmatis and M. vaccae transformed with pCR7 exhibited alkaline phosphatase (PhoA) activity, indicating transport of the heterologous protein across the mycobacterial membrane. pCR7 transformants: (a) had a single copy of the gene construct, (b) varied in the level of PhoA activity and (c) were cultivated stably in the absence of antibiotic pressure. Furthermore, production of the 18 kDa::PhoA fusion protein in pCR7 transformants was significantly enhanced during intracellular incubation in J774 macrophage monolayers. Thus, pCR7 may offer several advantages as a recombinant vaccine vector. Target antigens can be expressed in-frame with the 18 kDa::PhoA construct. Such recombinant Mycobacterium spp. would express the target antigen at the mycobacterial surface, co-express the immunostimulatory M. leprae 18 kDa sequences, and allow enhanced production of target antigens in vivo. Importantly, production of heterologous proteins could be verified by screening for PhoA activity, providing a potential alternative to antibiotic selection.
Virology | 2001
Amy C. Shurtleff; David W. C. Beasley; Jenny J.-Y. Chen; Haolin Ni; Miguel T. Suderman; Heiman Wang; Renling Xu; Eryu Wang; Scott C. Weaver; Douglas M. Watts; Kevin L. Russell; Alan D. T. Barrett