Heine Anton Hansen
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heine Anton Hansen.
Nature Chemistry | 2009
Jeffrey Greeley; Ifan E. L. Stephens; Alexander S. Bondarenko; Tobias Peter Johansson; Heine Anton Hansen; Thomas F. Jaramillo; Jan Rossmeisl; Ib Chorkendorff; Jens K. Nørskov
The widespread use of low-temperature polymer electrolyte membrane fuel cells for mobile applications will require significant reductions in the amount of expensive Pt contained within their cathodes, which drive the oxygen reduction reaction (ORR). Although progress has been made in this respect, further reductions through the development of more active and stable electrocatalysts are still necessary. Here we describe a new set of ORR electrocatalysts consisting of Pd or Pt alloyed with early transition metals such as Sc or Y. They were identified using density functional theory calculations as being the most stable Pt- and Pd-based binary alloys with ORR activity likely to be better than Pt. Electrochemical measurements show that the activity of polycrystalline Pt(3)Sc and Pt(3)Y electrodes is enhanced relative to pure Pt by a factor of 1.5-1.8 and 6-10, respectively, in the range 0.9-0.87 V.
Journal of Physics: Condensed Matter | 2010
J. Enkovaara; C. Rostgaard; Jens Jørgen Mortensen; Jingzhe Chen; Marcin Dulak; Lara Ferrighi; Jeppe Gavnholt; Christian Glinsvad; V. Haikola; Heine Anton Hansen; Henrik H. Kristoffersen; M. Kuisma; Ask Hjorth Larsen; L. Lehtovaara; Mathias P. Ljungberg; Olga Lopez-Acevedo; Poul Georg Moses; J. Ojanen; Thomas Olsen; Vivien Gabriele Petzold; Nichols A. Romero; Stausholm-Møller J; Mikkel Strange; Georgios Tritsaris; Marco Vanin; Michael Walter; Bjørk Hammer; Hannu Häkkinen; Georg K. H. Madsen; Risto M. Nieminen
Electronic structure calculations have become an indispensable tool in many areas of materials science and quantum chemistry. Even though the Kohn-Sham formulation of the density-functional theory (DFT) simplifies the many-body problem significantly, one is still confronted with several numerical challenges. In this article we present the projector augmented-wave (PAW) method as implemented in the GPAW program package (https://wiki.fysik.dtu.dk/gpaw) using a uniform real-space grid representation of the electronic wavefunctions. Compared to more traditional plane wave or localized basis set approaches, real-space grids offer several advantages, most notably good computational scalability and systematic convergence properties. However, as a unique feature GPAW also facilitates a localized atomic-orbital basis set in addition to the grid. The efficient atomic basis set is complementary to the more accurate grid, and the possibility to seamlessly switch between the two representations provides great flexibility. While DFT allows one to study ground state properties, time-dependent density-functional theory (TDDFT) provides access to the excited states. We have implemented the two common formulations of TDDFT, namely the linear-response and the time propagation schemes. Electron transport calculations under finite-bias conditions can be performed with GPAW using non-equilibrium Green functions and the localized basis set. In addition to the basic features of the real-space PAW method, we also describe the implementation of selected exchange-correlation functionals, parallelization schemes, ΔSCF-method, x-ray absorption spectra, and maximally localized Wannier orbitals.
Journal of Physical Chemistry Letters | 2013
Heine Anton Hansen; Joel B. Varley; Andrew A. Peterson; Jens K. Nørskov
We develop a model based on density functional theory calculations to describe trends in catalytic activity for CO2 electroreduction to CO in terms of the adsorption energy of the reaction intermediates, CO and COOH. The model is applied to metal surfaces as well as the active site in the CODH enzymes and shows that the strong scaling between adsorbed CO and adsorbed COOH on metal surfaces is responsible for the persistent overpotential. The active site of the CODH enzyme is not subject to these scaling relations and optimizes the relative binding energies of these adsorbates, allowing for an essentially reversible process with a low overpotential.
Physical Chemistry Chemical Physics | 2008
Heine Anton Hansen; Jan Rossmeisl; Jens K. Nørskov
Based on density functional theory calculations we investigate the electrochemically most stable surface structures as a function of pH and electrostatic potential for Pt(111), Ag(111) and Ni(111), and we construct surface Pourbaix diagrams. We study the oxygen reduction reaction (ORR) on the different surface structures and calculate the free energy of the intermediates. We estimate their catalytic activity for ORR by determining the highest potential at which all ORR reaction steps reduce the free energy. We obtain self-consistency in the sense that the surface is stable under the potential at which that particular surface can perform ORR. Using the self consistent surfaces, the activity of the very reactive Ni surface changes dramatically, whereas the activity of the more noble catalysts Pt and Ag remains unchanged. The reason for this difference is the oxidation of the reactive surface. Oxygen absorbed on the surface shifts the reactivity towards the weak binding region, which in turn increases the activity. The oxidation state of the surface and the ORR potential are constant versus the reversible hydrogen electrode (RHE). The dissolution potential in acidic solution, on the other hand, is constant vs. the standard hydrogen electrode (SHE). For Ag, this means that where the potential for dissolution and ORR are about the same at pH = 0, Ag becomes more stable relative to RHE as pH is increased. Hence the pH dependent stability offers an explanation for the possible use of Ag in alkaline fuel cell cathodes.
Angewandte Chemie | 2008
Eva M. Fernández; Poul Georg Moses; Anja Toftelund; Heine Anton Hansen; José I. Martínez; Frank Abild-Pedersen; Jesper Kleis; Berit Hinnemann; Jan Rossmeisl; Thomas Bligaard; Jens K. Nørskov
There has been substantial progress in the description of adsorption and chemical reactions of simple molecules on transition-metal surfaces. Adsorption energies and activation energies have been obtained for a number of systems, and complete catalytic reactions have been described in some detail. Considerable progress has also been made in the theoretical description of the interaction of molecules with transition-metal oxides, sulfides, and nitrides, but it is considerably more complicated to describe such complex systems theoretically. Complications arise from difficulties in describing the stoichiometry and structure of such surfaces, and from possible shortcomings in the use of ordinary generalized gradient approximation (GGA) type density functional theory (DFT). Herein we introduce a method that may facilitate the description of the bonding of gas molecules to transitionmetal oxides, sulfides, and nitrides. It was recently found that there are a set of scaling relationhips between the adsorption energies of different partially hydrogenated intermediates on transition-metal surfaces. We will show that similar scaling relationships exist for adsorption on transition metal oxide, sulfide, and nitride surfaces. This means that knowing the adsorption energy for one transition-metal complex will make it possible to quite easily generate data for a number of other complexes, and in this way obtain reactivity trends. The results presented herein have been calculated using self-consistent DFT. Exchange and correlation effects are described using the revised Perdew–Burke–Ernzerhof (RPBE) GGA functional. It is known that GGA functionals give adsorption energies with reasonable accuracy for transition metals. It is not clear, however, whether a similar accuracy can be expected for the oxides, sulfides, and nitrides, although there are examples of excellent agreement betweenDFT calculations and experiments, for example, with RuO2 surfaces. [9] In our study we focused entirely on variations in the adsorption energies from one system to another, and we expected that such results would be less dependent than the absolute adsorption energies on the description of exchange and correlation. For the nitrides, a clean surface and a surface with a nitrogen vacancy were studied. For MX2-type oxides or sulfides, an oxygenor sulfur-covered surface with an oxygen or sulfur vacancy was studied. The structures of the clean surface considered in the present work and their unit cells are shown in Figure 1. The adsorption energies given below are for the adsorbed species in the most stable adsorption site on the surface. By performing calculations for a large number of transition-metal surfaces of different orientations, it was found that the adsorption energy of intermediates of the type AHx is linearly correlated with the adsorption energy of atom A (N, O, S) according to Equation (1):
Langmuir | 2011
Alexander S. Bondarenko; Ifan E. L. Stephens; Heine Anton Hansen; Francisco J. Pérez-Alonso; Vladimir Tripkovic; Tobias Peter Johansson; Jan Rossmeisl; Jens K. Nørskov; Ib Chorkendorff
The Pt(111)/electrolyte interface has been characterized during the oxygen reduction reaction (ORR) in 0.1 M HClO(4) using electrochemical impedance spectroscopy. The surface was studied within the potential region where adsorption of OH* and O* species occur without significant place exchange between the adsorbate and Pt surface atoms (0.45-1.15 V vs RHE). An equivalent electric circuit is proposed to model the Pt(111)/electrolyte interface under ORR conditions within the selected potential window. This equivalent circuit reflects three processes with different time constants, which occur simultaneously during the ORR at Pt(111). Density functional theory (DFT) calculations were used to correlate and interpret the results of the measurements. The calculations indicate that the coadsorption of ClO(4)* and Cl* with OH* is unlikely. Our analysis suggests that the two-dimensional (2D) structures formed in O(2)-free solution are also formed under ORR conditions.
Physical Chemistry Chemical Physics | 2012
Álvaro Valdés; Jérémie Brillet; Michael Grätzel; Hildur Gudmundsdóttir; Heine Anton Hansen; Hannes Jónsson; Peter Klüpfel; Geert-Jan Kroes; Florian Le Formal; Isabela C. Man; Rafael Da Silva Martins; Jens K. Nørskov; Jan Rossmeisl; Kevin Sivula; Aleksandra Vojvodic; Michael Zäch
An overview of a collaborative experimental and theoretical effort toward efficient hydrogen production via photoelectrochemical splitting of water into di-hydrogen and di-oxygen is presented here. We present state-of-the-art experimental studies using hematite and TiO(2) functionalized with gold nanoparticles as photoanode materials, and theoretical studies on electro and photo-catalysis of water on a range of metal oxide semiconductor materials, including recently developed implementation of self-interaction corrected energy functionals.
Journal of Chemical Physics | 2009
Jens Strabo Hummelshøj; David Dominic Landis; Johannes Voss; T. Jiang; Adem Tekin; N. Bork; M. Duøak; Jacob Mortensen; L. Adamska; J. Andersin; J. D. Baran; Georgios D. Barmparis; Franziska Bell; A. L. Bezanilla; J. Bjork; F. Bleken; F. Buchter; M. Bürkle; P. D. Burton; B. B. Buus; Federico Calle-Vallejo; Simone Casolo; B. D. Chandler; D. H. Chi; I Czekaj; Soumendu Datta; A. Datye; A. DeLaRiva; V Despoja; S. Dobrin
We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M(1)); and 1 alkali, alkaline earth or 3d/4d transition metal atom (M(2)) plus two to five (BH(4))(-) groups, i.e., M(1)M(2)(BH(4))(2-5), using a number of model structures with trigonal, tetrahedral, octahedral, and free coordination of the metal borohydride complexes. Of the over 700 investigated structures, about 20 were predicted to form potentially stable alloys with promising decomposition energies. The M(1)(Al/Mn/Fe)(BH(4))(4), (Li/Na)Zn(BH(4))(3), and (Na/K)(Ni/Co)(BH(4))(3) alloys are found to be the most promising, followed by selected M(1)(Nb/Rh)(BH(4))(4) alloys.
Physical Chemistry Chemical Physics | 2014
Aliaksandr S. Bandarenka; Heine Anton Hansen; Jan Rossmeisl; Ifan E. L. Stephens
The unexpectedly high measured activity of Pt[n(111) × (111)] and Pt[n(111) × (100)] stepped single crystal surfaces towards the oxygen reduction reaction (ORR) is explained utilizing the hydroxyl binding energy as the activity descriptor. Using this descriptor (estimated using experimental data obtained by different groups), a well-defined Sabatier-type volcano is observed for the activities measured for the Pt[n(111) × (111)] and Pt[n(111) × (100)] stepped single crystals, in remarkable agreement with earlier theoretical studies. We propose that the observed destabilisation of *OH species at these surfaces is due to the decreased solvation of the adsorbed hydroxyl intermediates on adjacent terrace sites.
Chemcatchem | 2010
Felix Studt; Frank Abild-Pedersen; Heine Anton Hansen; Isabela C. Man; Jan Rossmeisl; Thomas Bligaard
We establish an activity relation for the heterogeneous catalytic oxidation of HCl (the Deacon Process) over rutile transition‐metal oxide catalysts by combining density functional theory calculations (DFT) with microkinetic modeling. Linear energy relations for the elementary reaction steps are obtained from the DFT calculations and used to establish a one‐dimensional descriptor for the catalytic activity. The descriptor employed here is the dissociative chemisorption energy of oxygen. It is found that the commonly employed RuO2 catalyst is close to optimal, but that there could still be room for improvements. The analysis suggests that oxide surfaces which offer slightly weaker bonding of oxygen should exhibit a superior activity to that of RuO2.