Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heinz Müller-Schärer is active.

Publication


Featured researches published by Heinz Müller-Schärer.


Oecologia | 2007

Nurse plants, tree saplings and grazing pressure: changes in facilitation along a biotic environmental gradient

Christian Smit; Charlotte Vandenberghe; Jan den Ouden; Heinz Müller-Schärer

Current conceptual models predict that an increase in stress shifts interactions between plants from competitive to facilitative; hence, facilitation is expected to gain in ecological importance with increasing stress. Little is known about how facilitative interactions between plants change with increasing biotic stress, such as that incurred by consumer pressure or herbivory (i.e. disturbance sensu Grime). In grazed ecosystems, the presence of unpalatable plants is reported to protect tree saplings against cattle grazing and enhance tree establishment. In accordance with current conceptual facilitation-stress models, we hypothesised a positive relationship between facilitation and grazing pressure. We tested this hypothesis in a field experiment in which tree saplings of four different species (deciduous Fagus sylvatica, Acer pseudoplatanus and coniferous Abies alba, Picea abies) were planted either inside or outside of the canopy of the spiny nurse shrub Rosa rubiginosa in enclosures differing in grazing pressure (low and high) and in exclosures. During one grazing season we followed the survival of the different tree saplings and the level of browsing on these; we also estimated browsing damage to the nurse shrubs. Shrub damage was highest at the higher grazing pressure. Correspondingly, browsing increased and survival decreased in saplings located inside the canopy of the shrubs at the high grazing pressure compared to the low grazing pressure. Saplings of both deciduous species showed a higher survival than the evergreens, while sapling browsing did not differ between species. The relative facilitation of sapling browsing and sapling survival – i.e. the difference between saplings inside and outside the shrub canopy – decreased at high grazing pressure as the facilitative species became less protective. Interestingly, these findings do not agree with current conceptual facilitation-stress models predicting increasing facilitation with abiotic stress. We used our results to design a conceptual model of facilitation along a biotic environmental gradient. Empirical studies are needed to test the applicability of this model. In conclusion, we suggest that current conceptual facilitation models should at least consider the possibility of decreasing facilitation at high levels of stress.


Ecology | 2009

Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa

Urs A. Treier; Olivier Broennimann; Signe Normand; Antoine Guisan; Urs Schaffner; Thomas Steinger; Heinz Müller-Schärer

Polyploidy is often assumed to increase the spread and thus the success of alien plant species, but few empirical studies exist. We tested this hypothesis with Centaurea maculosa Lam., a species native to Europe and introduced into North America approximately 120 years ago where it became highly invasive. We analyzed the ploidy level of more than 2000 plants from 93 native and 48 invasive C. maculosa populations and found a pronounced shift in the relative frequency of diploid and tetraploid cytotypes. In Europe diploid populations occur in higher frequencies than tetraploids and only four populations had both cytotypes, while in North America diploid plants were found in only one mixed population and thus tetraploids clearly dominated. Our results showed a pronounced shift in the climatic niche between tetraploid populations in the native and introduced range toward drier climate in North America and a similar albeit smaller shift between diploids and tetraploids in the native range. The field data indicate that diploids have a predominately monocarpic life cycle, while tetraploids are often polycarpic. Additionally, the polycarpic life-form seems to be more prevalent among tetraploids in the introduced range than among tetraploids in the native range. Our study suggests that both ploidy types of C. maculosa were introduced into North America, but tetraploids became the dominant cytotype with invasion. We suggest that the invasive success of C. maculosa is partly due to preadaptation of the tetraploid cytotype in Europe to drier climate and possibly further adaptation to these conditions in the introduced range. The potential for earlier and longer seed production associated with the polycarpic life cycle constitutes an additional factor that may have led to the dominance of tetraploids over diploids in the introduced range.


Ecology | 2007

Climate vs. soil factors in local adaptation of two common plant species

Mirka Macel; Clare Lawson; Simon R. Mortimer; Marie Šmilauerová; Armin Bischoff; Lisèle Crémieux; Jiří Doležal; Andrew R. Edwards; Vojtech Lanta; T. Martijn Bezemer; Wim H. van der Putten; José M. Igual; Claudino Rodriguez-Barrueco; Heinz Müller-Schärer; Thomas Steinger

Evolutionary theory suggests that divergent natural selection in heterogeneous environments can result in locally adapted plant genotypes. To understand local adaptation it is important to study the ecological factors responsible for divergent selection. At a continental scale, variation in climate can be important while at a local scale soil properties could also play a role. We designed an experiment aimed to disentangle the role of climate and (abiotic and biotic) soil properties in local adaptation of two common plant species. A grass (Holcus lanatus) and a legume (Lotus corniculatus), as well as their local soils, were reciprocally transplanted between three sites across an Atlantic-Continental gradient in Europe and grown in common gardens in either their home soil or foreign soils. Growth and reproductive traits were measured over two growing seasons. In both species, we found significant environmental and genetic effects on most of the growth and reproductive traits and a significant interaction between the two environmental effects of soil and climate. The grass species showed significant home site advantage in most of the fitness components, which indicated adaptation to climate. We found no indication that the grass was adapted to local soil conditions. The legume showed a significant home soil advantage for number of fruits only and thus a weak indication of adaptation to soil and no adaptation to climate. Our results show that the importance of climate and soil factors as drivers of local adaptation is species-dependent. This could be related to differences in interactions between plant species and soil biota.


Biological Invasions | 2008

Classical biological control: exploiting enemy escape to manage plant invasions

Heinz Müller-Schärer; Urs Schaffner

Practitioners of classical biological control of invasive weeds are confronted with a dual expectation: to achieve successful control of plant invaders and to avoid damage to nontarget plants and adverse indirect effects. In this paper we discuss key issues that we consider to be crucial for a safe, efficient, and successful classical biological control project, and that have also caused some recent controversy. These include selection of effective control agents, host specificity of the biological control agents, implications of the genetic population structure of the target populations, and potential impact on native food webs. With regard to improving the success rate of biological control of plant invaders, we first emphasize the importance of a clear a priori definition of success and a more ecosystem-based approach to better document both negative effects of the invasive plant as well as potential positive and negative effects of introducing biological control agents. Secondly, pre-release impact assessment could be improved by better focusing on how to reach high densities of the control agents and by including tolerance to and compensation of herbivory. Thirdly, we advocate a reinforced effort to integrate and combine biological control in combination with existing or potential management options. Finally, we propose various ecological and evolutionary hypotheses in the framework of our topic to document that biological control programmes against plant invaders also offer a great opportunity to gain new insights into basic processes in ecology and evolution.


Ecology | 2011

Plant invasions, generalist herbivores, and novel defense weapons

Urs Schaffner; Wendy M. Ridenour; Vera C. Wolf; Thomas Bassett; Caroline Müller; Heinz Müller-Schärer; Steve Sutherland; Christopher J. Lortie; Ragan M. Callaway

One commonly accepted mechanism for biological invasions is that species, after introduction to a new region, leave behind their natural enemies and therefore increase in distribution and abundance. However, which enemies are escaped remains unclear. Escape from specialist invertebrate herbivores has been examined in detail, but despite the profound effects of generalist herbivores in natural communities their potential to control invasive species is poorly understood. We carried out parallel laboratory feeding bioassays with generalist invertebrate herbivores from the native (Europe) and from the introduced (North America) range using native and nonnative tetraploid populations of the invasive spotted knapweed, Centaurea stoebe. We found that the growth of North American generalist herbivores was far lower when feeding on C. stoebe than the growth of European generalists. In contrast, North American and European generalists grew equally well on European and North American tetraploid C. stoebe plants, lending no support for an evolutionary change in resistance of North American tetraploid C. stoebe populations against generalist herbivores. These results suggest that biogeographical differences in the response of generalist herbivores to novel plant species have the potential to affect plant invasions.


Molecular Ecology | 2002

Does natural selection promote population divergence? A comparative analysis of population structure using amplified fragment length polymorphism markers and quantitative traits

Thomas Steinger; P. Haldimann; K. A. Leiss; Heinz Müller-Schärer

Divergent natural selection is considered an important force in plant evolution leading to phenotypic differentiation between populations exploiting different environments. Extending an earlier greenhouse study of population differentiation in the selfing annual plant Senecio vulgaris, we estimated the degree of population divergence in several quantitative traits related to growth and life history and compared these estimates with those based on presumably neutral molecular markers (amplified fragment length polymorphisms; AFLPs). This approach allowed us to disentangle the effects of divergent selection from that of other evolutionary forces (e.g. genetic drift). Five populations were examined from each of two habitat types (ruderal and agricultural habitats). We found a high proportion of total genetic variance to be among populations, both for AFLP markers (φST = 0.49) and for quantitative traits (range of QST: 0.26–0.77). There was a strong correlation between molecular and quantitative genetic differentiation between pairs of populations (Mantels r = 0.59). However, estimates of population differentiation in several quantitative traits exceeded the neutral expectation (estimated from AFLP data), suggesting that divergent selection contributed to phenotypic differentiation, especially between populations from ruderal and agricultural habitats. Estimates of within‐population variation in AFLP markers and quantitative genetic were poorly correlated, indicating that molecular marker data may be of limited value to predict the evolutionary potential of populations of S. vulgaris.


Entomologia Experimentalis Et Applicata | 1999

Effects of augmentative releases of eggs and larvae of the ladybird beetle, Adalia bipunctata, on the abundance of the rosy apple aphid, Dysaphis plantaginea, in organic apple orchards

Eric Wyss; Mathias Villiger; Jean-Louis Hemptinne; Heinz Müller-Schärer

The impact of augmentative releases of larvae and eggs of the indigenous ladybird beetle Adalia bipunctata (L.) (Coleoptera: Coccinellidae) against the rosy apple aphid Dysaphis plantaginea Pass. (Homoptera: Aphididae), a major pest insect on apple trees, was assessed in field experiments in Switzerland, during 1997. In a first experiment, eggs and larvae were released on 3‐year old apple trees infested with five aphids at four different predator‐prey ratios (0:5, 1:5, 1:1, 5:1). In a second experiment, eggs and larvae were released at a predator‐prey ratio of 5:1 on branches of apple trees naturally infested with aphids. In both experiments, the interaction with ants was taken into account and the releases were done at two different times in spring. The results showed that an augmentative release of larvae significantly prevented the build‐up of colonies of D. plantaginea. Significant reductions in aphid numbers were recorded at the two highest predator‐prey ratios, 1:1 and 5:1. Larvae were efficient just before flowering of apple trees at a time when growers normally have to spray their trees. On trees where ants were present the larvae of A. bipunctata were significantly less efficient. Effects of eggs of A. bipunctata, however, were less reliable. At the first date of release (5 April), they did not hatch, probably as a consequence of bad weather conditions.


Journal of Ecology | 2015

Biological Flora of the British Isles: Ambrosia Artemisiifolia

Franz Essl; Krisztina Biró; Dietmar Brandes; Olivier Broennimann; James M. Bullock; Daniel S. Chapman; Bruno Chauvel; Stefan Dullinger; Boris Fumanal; Antoine Guisan; Gerhard Karrer; Gabriella Kazinczi; Christoph Kueffer; Beryl Laitung; Claude Lavoie; Michael Leitner; Thomas Mang; Dietmar Moser; Heinz Müller-Schärer; Blaise Petitpierre; Robert Richter; Urs Schaffner; Matt Smith; Uwe Starfinger; Robert Vautard; G. Vogl; Moritz von der Lippe; Swen Follak

This account presents information on all aspects of the biology of Ambrosia artemisiifolia L. (Common ragweed) that are relevant to understanding its ecology. The main topics are presented within the standard framework of the Biological Flora of the British Isles: distribution, habitat, communities, responses to biotic factors, responses to environment, structure and physiology, phenology, floral and seed characters, herbivores and disease, and history, conservation, impacts and management. Ambrosia artemisiifolia is a monoecious, wind-pollinated, annual herb native to North America whose height varies from 10 cm to 2.5 m, according to environmental conditions. It has erect, branched stems and pinnately lobed leaves. Spike-like racemes of male capitula composed of staminate (male) florets terminate the stems, while cyme-like clusters of pistillate (female) florets are arranged in groups in the axils of main and lateral stem leaves. Seeds require prolonged chilling to break dormancy. Following seedling emergence in spring, the rate of vegetative growth depends on temperature, but development occurs over a wide thermal range. In temperate European climates, male and female flowers are produced from summer to early autumn (July to October). Ambrosia artemisiifolia is sensitive to freezing. Late spring frosts kill seedlings and the first autumn frosts terminate the growing season. It has a preference for dry soils of intermediate to rich nutrient level. Ambrosia artemisiifolia was introduced into Europe with seed imports from North America in the 19th century. Since World War II, it has become widespread in temperate regions of Europe and is now abundant in open, disturbed habitats as a ruderal and agricultural weed. Recently, the North American ragweed leaf beetle (Ophraella communa) has been detected in southern Switzerland and northern Italy. This species appears to have the capacity to substantially reduce growth and seed production of A. artemisiifolia. In heavily infested regions of Europe, A. artemisiifolia causes substantial crop-yield losses and its copious, highly allergenic pollen creates considerable public health problems. There is a consensus among models that climate change will allow its northward and uphill spread in Europe.


New Phytologist | 2008

Potential contribution of natural enemies to patterns of local adaptation in plants.

Lisèle Crémieux; Armin Bischoff; Majka Šmilauerová; Clare Lawson; Simon R. Mortimer; Jiří Doležal; Vojtěch Lanta; Andrew R. Edwards; Alex J. Brook; Thomas Tscheulin; Mirka Macel; Jan Lepš; Heinz Müller-Schärer; Thomas Steinger

Genetic differentiation among plant populations and adaptation to local environmental conditions are well documented. However, few studies have examined the potential contribution of plant antagonists, such as insect herbivores and pathogens, to the pattern of local adaptation. Here, a reciprocal transplant experiment was set up at three sites across Europe using two common plant species, Holcus lanatus and Plantago lanceolata. The amount of damage by the main above-ground plant antagonists was measured: a rust fungus infecting Holcus and a specialist beetle feeding on Plantago, both in low-density monoculture plots and in competition with interspecific neighbours. Strong genetic differentiation among provenances in the amount of damage by antagonists in both species was found. Local provenances of Holcus had significantly higher amounts of rust infection than foreign provenances, whereas local provenances of Plantago were significantly less damaged by the specialist beetle than the foreign provenances. The presence of surrounding vegetation affected the amount of damage but had little influence on the ranking of plant provenances. The opposite pattern of population differentiation in resistance to local antagonists in the two species suggests that it will be difficult to predict the consequences of plant translocations for interactions with organisms of higher trophic levels.


Archive | 2004

Predicting evolutionary change in invasive, exotic plants and its consequences for plant-herbivore interactions.

Heinz Müller-Schärer; Thomas Steinger; L. E. Ehler; R. Sforza; T. Mateille

Invasion ecology, the study of the distribution and spread of organisms in habitats to which they are not native, has received considerable attention during past decades (Groves and Burdon, 1986; Drake et al., 1989; Vitousek et al., 1996; Williamson, 1996; Lonsdale, 1999; Walker, 1999; Alpert et al., 2000; Mack et al., 2000). This is mainly a consequence of the increased awareness of the major threats posed by invasions to biodiversity, ecosystem integrity, agriculture and human health (Lonsdale, 1999; Mack et al., 2000). Two questions have dominated most of the studies in this context: which species are most likely to become invasive, and which habitats are most susceptible to invasion (Alpert et al., 2000; Kolar and Lodge, 2001). Surprisingly, the evolutionary genetics of invasive species remained relatively unexplored despite the profound effect of genetic characteristics of populations on their capacity for range expansion (Ellstrand and Schierenbeck, 2000; Tsutsui et al., 2000) and on species interactions (Carroll et al., 2001; Siemann and Rogers, 2001). In fact, in a recent review on this topic, Lee (2002) concluded that ‘the invasion success of many species might depend more heavily on their ability to respond to natural selection than on broad physiological tolerance or plasticity’. Natural selection and genetic drift can alter the genetic structure of invading populations, and hence affect not only the process of adaptation to the new physical environment, but also the plentiful biotic interaction encountered in the new habitat. The invasion process is generally divided into two phases: the initial introduction and establishment, and the spread into the new environment. Many of

Collaboration


Dive into the Heinz Müller-Schärer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Sun

University of Fribourg

View shared research outputs
Top Co-Authors

Avatar

Patrik Mráz

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge