Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Broennimann is active.

Publication


Featured researches published by Olivier Broennimann.


Trends in Ecology and Evolution | 2008

Niche dynamics in space and time

Antoine Guisan; Olivier Broennimann; Christophe F. Randin

Niche conservatism, the tendency of a species niche to remain unchanged over time, is often assumed when discussing, explaining or predicting biogeographical patterns. Unfortunately, there has been no basis for predicting niche dynamics over relevant timescales, from tens to a few hundreds of years. The recent application of species distribution models (SDMs) and phylogenetic methods to analysis of niche characteristics has provided insight to niche dynamics. Niche shifts and conservatism have both occurred within the last 100 years, with recent speciation events, and deep within clades of species. There is increasing evidence that coordinated application of these methods can help to identify species which likely fulfill one key assumption in the predictive application of SDMs: an unchanging niche. This will improve confidence in SDM-based predictions of the impacts of climate change and species invasions on species distributions and biodiversity.


Ecology Letters | 2013

Predicting species distributions for conservation decisions.

Antoine Guisan; Reid Tingley; John B. Baumgartner; Ilona Naujokaitis-Lewis; Patricia R. Sutcliffe; Ayesha I. T. Tulloch; Tracey J. Regan; Lluís Brotons; Eve McDonald-Madden; Chrystal S. Mantyka-Pringle; Tara G. Martin; Jonathan R. Rhodes; Ramona Maggini; Samantha A. Setterfield; Jane Elith; Mark W. Schwartz; Brendan A. Wintle; Olivier Broennimann; M. P. Austin; Simon Ferrier; Michael R. Kearney; Hugh P. Possingham; Yvonne M. Buckley

Species distribution models (SDMs) are increasingly proposed to support conservation decision making. However, evidence of SDMs supporting solutions for on-ground conservation problems is still scarce in the scientific literature. Here, we show that successful examples exist but are still largely hidden in the grey literature, and thus less accessible for analysis and learning. Furthermore, the decision framework within which SDMs are used is rarely made explicit. Using case studies from biological invasions, identification of critical habitats, reserve selection and translocation of endangered species, we propose that SDMs may be tailored to suit a range of decision-making contexts when used within a structured and transparent decision-making process. To construct appropriate SDMs to more effectively guide conservation actions, modellers need to better understand the decision process, and decision makers need to provide feedback to modellers regarding the actual use of SDMs to support conservation decisions. This could be facilitated by individuals or institutions playing the role of ‘translators’ between modellers and decision makers. We encourage species distribution modellers to get involved in real decision-making processes that will benefit from their technical input; this strategy has the potential to better bridge theory and practice, and contribute to improve both scientific knowledge and conservation outcomes.


Science | 2012

Climatic Niche Shifts Are Rare Among Terrestrial Plant Invaders

Blaise Petitpierre; Christoph Kueffer; Olivier Broennimann; Christophe F. Randin; Curtis C. Daehler; Antoine Guisan

Invading a Place Like Home Biological invasions can cause enormous economic problems but they also represent a biological experiment and provide insight into species distributions and range expansion or restriction. Most predictions about when and where species will invade rest on the assumption that invasive species will retain the same climatic niche in the invaded area. But is this assumption valid? Petitpierre et al. (p. 1344) studied a large data set on plant invasions between Eurasia, North America, and Australia and indeed found that fewer than 15% of the studied species occupied more than 10% of invaded distribution outside their native climatic niche, and only one species exhibited >50% climatic niche expansion in its invaded range. Thus, niche shifts are rather rare events in plant invasions. Distribution data for 50 species confirms that invasive plants usually expand into areas with similar climate characteristics. The assumption that climatic niche requirements of invasive species are conserved between their native and invaded ranges is key to predicting the risk of invasion. However, this assumption has been challenged recently by evidence of niche shifts in some species. Here, we report the first large-scale test of niche conservatism for 50 terrestrial plant invaders between Eurasia, North America, and Australia. We show that when analog climates are compared between regions, fewer than 15% of species have more than 10% of their invaded distribution outside their native climatic niche. These findings reveal that substantial niche shifts are rare in terrestrial plant invaders, providing support for an appropriate use of ecological niche models for the prediction of both biological invasions and responses to climate change.


Biology Letters | 2008

Predicting current and future biological invasions: both native and invaded ranges matter.

Olivier Broennimann; Antoine Guisan

The classical approach to predicting the geographical extent of species invasions consists of training models in the native range and projecting them in distinct, potentially invasible areas. However, recent studies have demonstrated that this approach could be hampered by a change of the realized climatic niche, allowing invasive species to spread into habitats in the invaded ranges that are climatically distinct from those occupied in the native range. We propose an alternative approach that involves fitting models with pooled data from all ranges. We show that this pooled approach improves prediction of the extent of invasion of spotted knapweed (Centaurea maculosa) in North America on models based solely on the European native range. Furthermore, it performs equally well on models based on the invaded range, while ensuring the inclusion of areas with similar climate to the European niche, where the species is likely to spread further. We then compare projections from these models for 2080 under a severe climate warming scenario. Projections from the pooled models show fewer areas of intermediate climatic suitability than projections from the native or invaded range models, suggesting a better consensus among modelling techniques and reduced uncertainty.


Trends in Ecology and Evolution | 2014

Unifying niche shift studies: insights from biological invasions

Antoine Guisan; Blaise Petitpierre; Olivier Broennimann; Curtis C. Daehler; Christoph Kueffer

Assessing whether the climatic niche of a species may change between different geographic areas or time periods has become increasingly important in the context of ongoing global change. However, approaches and findings have remained largely controversial so far, calling for a unification of methods. Here, we build on a review of empirical studies of invasion to formalize a unifying framework that decomposes niche change into unfilling, stability, and expansion situations, taking both a pooled range and range-specific perspective on the niche, while accounting for climatic availability and climatic analogy. This framework provides new insights into the nature of climate niche shifts and our ability to anticipate invasions, and may help in guiding the design of experiments for assessing causes of niche changes.


Ecology Letters | 2008

Prediction of plant species distributions across six millennia

Christophe F. Randin; Olivier Broennimann; Pascal Vittoz; Willem Oscar van der Knaap; Robin Engler; Gwenaëlle Le Lay; Niklaus E. Zimmermann; Antoine Guisan

The usefulness of species distribution models (SDMs) in predicting impacts of climate change on biodiversity is difficult to assess because changes in species ranges may take decades or centuries to occur. One alternative way to evaluate the predictive ability of SDMs across time is to compare their predictions with data on past species distributions. We use data on plant distributions, fossil pollen and current and mid-Holocene climate to test the ability of SDMs to predict past climate-change impacts. We find that species showing little change in the estimated position of their realized niche, with resulting good model performance, tend to be dominant competitors for light. Different mechanisms appear to be responsible for among-species differences in model performance. Confidence in predictions of the impacts of climate change could be improved by selecting species with characteristics that suggest little change is expected in the relationships between species occurrence and climate patterns.


Ecology | 2009

Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa

Urs A. Treier; Olivier Broennimann; Signe Normand; Antoine Guisan; Urs Schaffner; Thomas Steinger; Heinz Müller-Schärer

Polyploidy is often assumed to increase the spread and thus the success of alien plant species, but few empirical studies exist. We tested this hypothesis with Centaurea maculosa Lam., a species native to Europe and introduced into North America approximately 120 years ago where it became highly invasive. We analyzed the ploidy level of more than 2000 plants from 93 native and 48 invasive C. maculosa populations and found a pronounced shift in the relative frequency of diploid and tetraploid cytotypes. In Europe diploid populations occur in higher frequencies than tetraploids and only four populations had both cytotypes, while in North America diploid plants were found in only one mixed population and thus tetraploids clearly dominated. Our results showed a pronounced shift in the climatic niche between tetraploid populations in the native and introduced range toward drier climate in North America and a similar albeit smaller shift between diploids and tetraploids in the native range. The field data indicate that diploids have a predominately monocarpic life cycle, while tetraploids are often polycarpic. Additionally, the polycarpic life-form seems to be more prevalent among tetraploids in the introduced range than among tetraploids in the native range. Our study suggests that both ploidy types of C. maculosa were introduced into North America, but tetraploids became the dominant cytotype with invasion. We suggest that the invasive success of C. maculosa is partly due to preadaptation of the tetraploid cytotype in Europe to drier climate and possibly further adaptation to these conditions in the introduced range. The potential for earlier and longer seed production associated with the polycarpic life cycle constitutes an additional factor that may have led to the dominance of tetraploids over diploids in the introduced range.


Annals of Botany | 2010

Multiple introductions boosted genetic diversity in the invasive range of black cherry (Prunus serotina; Rosaceae)

Marie Pairon; Blaise Petitpierre; Michael A. Campbell; Antoine Guisan; Olivier Broennimann; Philippe Baret; Anne-Laure Jacquemart; Guillaume Besnard

BACKGROUND AND AIMS Black cherry (Prunus serotina) is a North American tree that is rapidly invading European forests. This species was introduced first as an ornamental plant, then it was massively planted by foresters in many countries, but its origins and the process of invasion remain poorly documented. Based on a genetic survey of both native and invasive ranges, the invasion history of black cherry was investigated by identifying putative source populations and then assessing the importance of multiple introductions on the maintenance of gene diversity. METHODS Genetic variability and structure of 23 populations from the invasive range and 22 populations from the native range were analysed using eight nuclear microsatellite loci and five chloroplast DNA regions. KEY RESULTS Chloroplast DNA diversity suggests there were multiple introductions from a single geographic region (the north-eastern United States). A low reduction of genetic diversity was observed in the invasive range for both nuclear and plastid genomes. High propagule pressure including both the size and number of introductions shaped the genetic structure in Europe and boosted genetic diversity. Populations from Denmark, The Netherlands, Belgium and Germany showed high genetic diversity and low differentiation among populations, supporting the hypothesis that numerous introduction events, including multiple individuals and exchanges between sites, have taken place during two centuries of plantation. CONCLUSIONS This study postulates that the invasive black cherry has originated from east of the Appalachian Mountains (mainly the Allegheny plateau) and its invasiveness in north-western Europe is mainly due to multiple introductions containing high numbers of individuals.


Journal of Ecology | 2015

Biological Flora of the British Isles: Ambrosia Artemisiifolia

Franz Essl; Krisztina Biró; Dietmar Brandes; Olivier Broennimann; James M. Bullock; Daniel S. Chapman; Bruno Chauvel; Stefan Dullinger; Boris Fumanal; Antoine Guisan; Gerhard Karrer; Gabriella Kazinczi; Christoph Kueffer; Beryl Laitung; Claude Lavoie; Michael Leitner; Thomas Mang; Dietmar Moser; Heinz Müller-Schärer; Blaise Petitpierre; Robert Richter; Urs Schaffner; Matt Smith; Uwe Starfinger; Robert Vautard; G. Vogl; Moritz von der Lippe; Swen Follak

This account presents information on all aspects of the biology of Ambrosia artemisiifolia L. (Common ragweed) that are relevant to understanding its ecology. The main topics are presented within the standard framework of the Biological Flora of the British Isles: distribution, habitat, communities, responses to biotic factors, responses to environment, structure and physiology, phenology, floral and seed characters, herbivores and disease, and history, conservation, impacts and management. Ambrosia artemisiifolia is a monoecious, wind-pollinated, annual herb native to North America whose height varies from 10 cm to 2.5 m, according to environmental conditions. It has erect, branched stems and pinnately lobed leaves. Spike-like racemes of male capitula composed of staminate (male) florets terminate the stems, while cyme-like clusters of pistillate (female) florets are arranged in groups in the axils of main and lateral stem leaves. Seeds require prolonged chilling to break dormancy. Following seedling emergence in spring, the rate of vegetative growth depends on temperature, but development occurs over a wide thermal range. In temperate European climates, male and female flowers are produced from summer to early autumn (July to October). Ambrosia artemisiifolia is sensitive to freezing. Late spring frosts kill seedlings and the first autumn frosts terminate the growing season. It has a preference for dry soils of intermediate to rich nutrient level. Ambrosia artemisiifolia was introduced into Europe with seed imports from North America in the 19th century. Since World War II, it has become widespread in temperate regions of Europe and is now abundant in open, disturbed habitats as a ruderal and agricultural weed. Recently, the North American ragweed leaf beetle (Ophraella communa) has been detected in southern Switzerland and northern Italy. This species appears to have the capacity to substantially reduce growth and seed production of A. artemisiifolia. In heavily infested regions of Europe, A. artemisiifolia causes substantial crop-yield losses and its copious, highly allergenic pollen creates considerable public health problems. There is a consensus among models that climate change will allow its northward and uphill spread in Europe.


Annals of Botany | 2012

Anthropogenic disturbance as a driver of microspatial and microhabitat segregation of cytotypes of Centaurea stoebe and cytotype interactions in secondary contact zones

Patrik Mráz; Stanislav Španiel; Andreas Keller; Gillianne Bowmann; Alexandre Farkas; Barbora Šingliarová; Rudolf P. Rohr; Olivier Broennimann; Heinz Müller-Schärer

BACKGROUND AND AIMS In a mixed-ploidy population, strong frequency-dependent mating will lead to the elimination of the less common cytotype, unless prezygotic barriers enhance assortative mating. However, such barriers favouring cytotype coexistence have only rarely been explored. Here, an assessment is made of the mechanisms involved in formation of mixed-ploidy populations and coexistence of diploid plants and their closely related allotetraploid derivates from the Centaurea stoebe complex (Asteraceae). METHODS An investigation was made of microspatial and microhabitat distribution, life-history and fitness traits, flowering phenology, genetic relatedness of cytotypes and intercytotype gene flow (cpDNA and microsatellites) in six mixed-ploidy populations in Central Europe. KEY RESULTS Diploids and tetraploids were genetically differentiated, thus corroborating the secondary origin of contact zones. The cytotypes were spatially segregated at all sites studied, with tetraploids colonizing preferentially drier and open microhabitats created by human-induced disturbances. Conversely, they were rare in more natural microsites and microsites with denser vegetation despite their superior persistence ability (polycarpic life cycle). The seed set of tetraploid plants was strongly influenced by their frequency in mixed-ploidy populations. Triploid hybrids originated from bidirectional hybridizations were extremely rare and almost completely sterile, indicating a strong postzygotic barrier between cytotypes. CONCLUSIONS The findings suggest that tetraploids are later immigrants into already established diploid populations and that anthropogenic activities creating open niches favouring propagule introductions were the major factor shaping the non-random distribution and habitat segregation of cytotypes at fine spatial scale. Establishment and spread of tetraploids was further facilitated by their superior persistence through the perennial life cycle. The results highlight the importance of non-adaptive spatio-temporal processes in explaining microhabitat and microspatial segregation of cytotypes.

Collaboration


Dive into the Olivier Broennimann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wilfried Thuiller

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niklaus E. Zimmermann

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge