Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helen A. Fletcher is active.

Publication


Featured researches published by Helen A. Fletcher.


Nature Medicine | 2004

Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans

Helen McShane; Ansar A. Pathan; Clare R. Sander; Sheila M. Keating; Sarah C. Gilbert; Kris Huygen; Helen A. Fletcher; Adrian V. S. Hill

Protective immunity against Mycobacterium tuberculosis depends on the generation of a TH1-type cellular immune response, characterized by the secretion of interferon-γ (IFN-γ) from antigen-specific T cells. The induction of potent cellular immune responses by vaccination in humans has proven difficult. Recombinant viral vectors, especially poxviruses and adenoviruses, are particularly effective at boosting previously primed CD4+ and CD8+ T-cell responses against a number of intracellular pathogens in animal studies. In the first phase 1 study of any candidate subunit vaccine against tuberculosis, recombinant modified vaccinia virus Ankara (MVA) expressing antigen 85A (MVA85A) was found to induce high levels of antigen-specific IFN-γ-secreting T cells when used alone in bacille Calmette-Guérin (BCG)-naive healthy volunteers. In volunteers who had been vaccinated 0.5–38 years previously with BCG, substantially higher levels of antigen-specific IFN-γ-secreting T cells were induced, and at 24 weeks after vaccination these levels were 5–30 times greater than in vaccinees administered a single BCG vaccination. Boosting vaccinations with MVA85A could offer a practical and efficient strategy for enhancing and prolonging antimycobacterial immunity in tuberculosis-endemic areas.


Clinical Infectious Diseases | 2011

Potent CD8+ T-Cell Immunogenicity in Humans of a Novel Heterosubtypic Influenza A Vaccine, MVA−NP+M1

Tamara Berthoud; Matthew Hamill; Patrick J. Lillie; Lenias Hwenda; Katharine A. Collins; Katie Ewer; Anita Milicic; Hazel C. Poyntz; Teresa Lambe; Helen A. Fletcher; Adrian V. S. Hill; Sarah C. Gilbert

Background. Influenza A viruses cause occasional pandemics and frequent epidemics. Licensed influenza vaccines that induce high antibody titers to the highly polymorphic viral surface antigen hemagglutinin must be re-formulated and readministered annually. A vaccine providing protective immunity to the highly conserved internal antigens could provide longer-lasting protection against multiple influenza subtypes. Methods. We prepared a Modified Vaccinia virus Ankara (MVA) vector encoding nucleoprotein and matrix protein 1 (MVA−NP+M1) and conducted a phase I clinical trial in healthy adults. Results. The vaccine was generally safe and well tolerated, with significantly fewer local side effects after intramuscular rather than intradermal administration. Systemic side effects increased at the higher dose in both frequency and severity, with 5 out of 8 volunteers experiencing severe nausea/vomiting, malaise, or rigors. Ex vivo T-cell responses to NP and M1 measured by IFN-γ ELISPOT assay were significantly increased after vaccination (prevaccination median of 123 spot-forming units/million peripheral blood mononuclear cells, postvaccination peak response median 339, 443, and 1443 in low-dose intradermal, low-dose intramuscular, and high-dose intramuscular groups, respectively), and the majority of the antigen-specific T cells were CD8+. Conclusions. We conclude that the vaccine was both safe and remarkably immunogenic, leading to frequencies of responding T cells that appear to be much higher than those induced by any other influenza vaccination approach. Further studies will be required to find the optimum dose and to assess whether the increased T-cell response to conserved influenza proteins results in protection from influenza disease.


Clinical and Vaccine Immunology | 2006

Recognition of Stage-Specific Mycobacterial Antigens Differentiates between Acute and Latent Infections with Mycobacterium tuberculosis

Abebech Demissie; Eliane M. S. Leyten; Markos Abebe; Abraham Aseffa; Getahun Abate; Helen A. Fletcher; Patrick K. Owiafe; Philip C. Hill; Roger Brookes; G. A. W. Rook; Alimuddin Zumla; Sandra M. Arend; Michèl R. Klein; Tom H. M. Ottenhoff; Peter Andersen; T. Mark Doherty

ABSTRACT Mycobacterium tuberculosis is estimated to infect 80 to 100 million people annually, the majority of whom do not develop clinical tuberculosis (TB) but instead maintain the infection in a latent state. These individuals generally become positive in response to a tuberculin skin test and may develop clinical TB at a later date, particularly if their immune systems are compromised. Latently infected individuals are interesting for two reasons. First, they are an important reservoir of M. tuberculosis, which needs to be considered for TB control. Second, if detected prior to recrudescence of the disease, they represent a human population that is making a protective immune response to M. tuberculosis, which is very important for defining correlates of protective immunity. In this study, we show that while responsiveness to early secretory antigenic target 6 is a good marker for M. tuberculosis infection, a strong response to the 16-kDa Rv2031c antigen (HspX or α-crystallin) is largely restricted to latently infected individuals, offering the possibility of differential immunodiagnosis of, or therapeutic vaccination against, TB.


Journal of Immunology | 2004

Healthy Individuals That Control a Latent Infection with Mycobacterium tuberculosis Express High Levels of Th1 Cytokines and the IL-4 Antagonist IL-4δ2

Abebech Demissie; Markos Abebe; Abraham Aseffa; G. A. W. Rook; Helen A. Fletcher; Alimuddin Zumla; Karin Weldingh; Inger Brock; Peter Andersen; T. Mark Doherty

The majority of healthy individuals exposed to Mycobacterium tuberculosis will not develop disease and identifying what constitutes “protective immunity” is one of the holy grails of M. tuberculosis immunology. It is known that IFN-γ is essential for protection, but it is also apparent that IFN-γ levels alone do not explain the immunity/susceptibility dichotomy. The controversy regarding correlates of immunity persists because identifying infected but healthy individuals (those who are immune) has been problematic. We have therefore used recognition of the M. tuberculosis virulence factor early secretory antigenic target 6 to identify healthy, but infected individuals from tuberculosis (TB)-endemic and nonendemic regions (Ethiopia and Denmark) and have compared signals for cytokines expressed directly ex vivo with the pattern found in TB patients. We find that TB patients are characterized by decreased levels of Th1 cytokines and increased levels of IL-10 compared with the healthy infected and noninfected community controls. Interestingly, the healthy infected subjects exhibited a selective increase of message for the IL-4 antagonist, IL-4δ2, compared with both TB patients or noninfected individuals. These data suggest that long-term control of M. tuberculosis infection is associated not just with elevated Th1 responses but also with inhibition of the Th2 response.


PLOS ONE | 2008

Sensitivity of IFN-γ Release Assay to Detect Latent Tuberculosis Infection Is Retained in HIV-Infected Patients but Dependent on HIV/AIDS Progression

Farba Karam; Fatou Mbow; Helen A. Fletcher; Cheikh S. Senghor; Koura D. Coulibaly; Andrea M. LeFevre; Ndeye Fatou Ngom Gueye; Tandakha Dieye; Papa Salif Sow; Souleymane Mboup; Christian Lienhardt

Background Detection and treatment of latent TB infection (LTBI) in HIV infected individuals is strongly recommended to decrease morbidity and mortality in countries with high levels of HIV. Objective To assess the validity of a newly developed in-house ELISPOT interferon-γ release assay (IGRA) for the detection of LTBI amongst HIV infected individuals, in comparison with the Tuberculin Skin Test (TST). Methodology/Principal Findings ESAT6/CFP10 (EC) ELISPOT assays were performed, together with a TST, in 285 HIV infected individuals recruited in HIV clinics in Dakar, Senegal, who had no signs of active TB at time of enrolment. Thirty eight of the subjects (13.3%) failed to respond to PHA stimulation and were excluded from the analysis. In the 247 remaining patients, response to PHA did not vary according to CD4 cell count categories (p = 0.51). EC ELISPOT was positive in 125 (50.6%) subjects, while 53 (21.5%) had a positive TST. Concordance between EC ELISPOT and TST was observed in 151 patients (61.1%) (kappa = 0.23). The proportion of subjects with a positive response to the EC ELISPOT assay decreased with declining CD4 counts (p trend = 0.001), but were consistently higher than the proportion of TST responders. In multivariate analysis, the risk of being EC-ELISPOT positive in HIV infected individuals was associated with age, CD4 count and HIV-1 strain. Conclusion Our study indicates that IGRAs using M. tuberculosis specific antigens are likely to retain their validity for the diagnosis of LTBI among HIV positive individuals, but may be impaired by T-cell anergy in severely immuno-suppressed individuals.


PLOS Medicine | 2008

Immunological Outcomes of New Tuberculosis Vaccine Trials: WHO Panel Recommendations

Willem A. Hanekom; Hazel M. Dockrell; Tom H. M. Ottenhoff; T. Mark Doherty; Helen A. Fletcher; Helen McShane; Frank Weichold; Dan Hoft; Shreemanta K. Parida; Uli Fruth

Willem Hanekom and colleagues make recommendations on assay harmonization for novel tuberculosis vaccine trials.


Nature Communications | 2016

T-cell activation is an immune correlate of risk in BCG vaccinated infants

Helen A. Fletcher; Margaret Ann Snowden; Bernard Landry; W Rida; Iman Satti; Stephanie A. Harris; Magali Matsumiya; Rachel Tanner; Matthew K. O'Shea; Dheenadhayalan; L Bogardus; Lisa Stockdale; Leanne Marsay; Agnieszka Chomka; Rachel Harrington-Kandt; Zita-Rose Manjaly-Thomas; Naranbhai; Elena Stylianou; Fatoumatta Darboe; Adam Penn-Nicholson; Elisa Nemes; M Hatheril; Gregory D. Hussey; Hassan Mahomed; M. Tameris; Jb McClain; Thomas G. Evans; Willem A. Hanekom; Tom Scriba; Helen McShane

Vaccines to protect against tuberculosis (TB) are urgently needed. We performed a case–control analysis to identify immune correlates of TB disease risk in Bacille Calmette–Guerin (BCG) immunized infants from the MVA85A efficacy trial. Among 53 TB case infants and 205 matched controls, the frequency of activated HLA-DR+ CD4+ T cells associates with increased TB disease risk (OR=1.828, 95% CI=1.25–2.68, P=0.002, FDR=0.04, conditional logistic regression). In an independent study of Mycobacterium tuberculosis-infected adolescents, activated HLA-DR+ CD4+ T cells also associate with increased TB disease risk (OR=1.387, 95% CI=1.068–1.801, P=0.014, conditional logistic regression). In infants, BCG-specific T cells secreting IFN-γ associate with reduced risk of TB (OR=0.502, 95% CI=0.29–0.86, P=0.013, FDR=0.14). The causes and impact of T-cell activation on disease risk should be considered when designing and testing TB vaccine candidates for these populations.


Immunology | 2004

Increased expression of mRNA encoding interleukin (IL)‐4 and its splice variant IL‐4δ2 in cells from contacts of Mycobacterium tuberculosis, in the absence of in vitro stimulation

Helen A. Fletcher; Patrick K. Owiafe; David Jeffries; Philip C. Hill; G. A. W. Rook; Alimuddin Zumla; T. Mark Doherty; Roger Brookes

Expression of interleukin (IL)‐4 is increased in tuberculosis and thought to be detrimental. We show here that in healthy contacts there is increased expression of its naturally occurring antagonist, IL‐4delta2 (IL‐4δ2). We identified contacts by showing that their peripheral blood mononuclear cells (PBMC) released interferon (IFN)‐γ in response to the Mycobacterium tuberculosis‐specific antigen 6 kDa early secretory antigenic target (ESAT‐6). Fresh unstimulated PBMC from these contacts contained higher levels of mRNA encoding IL‐4δ2 (P=0·002) than did cells from ESAT‐6 negative donors (noncontacts). These data indicate that contact with M. tuberculosis induces unusual, previously unrecognized, immunological events. We tentatively hypothesize that progression to active disease might depend upon the underlying ratio of IL‐4 to IL‐4δ2.


PLOS ONE | 2009

Safety and immunogenicity of boosting BCG vaccinated subjects with BCG: Comparison with boosting with a new TB vaccine, MVA85A

Kathryn T. Whelan; Ansar A. Pathan; Clare R. Sander; Helen A. Fletcher; Ian D. Poulton; Nicola Alder; Adrian V. S. Hill; Helen McShane

Objectives To investigate the safety and immunogenicity of a booster BCG vaccination delivered intradermally in healthy, BCG vaccinated subjects and to compare with a previous clinical trial where BCG vaccinated subjects were boosted with a new TB vaccine, MVA85A. Design Phase I open label observational trial, in the UK. Healthy, HIV-negative, BCG vaccinated adults were recruited and vaccinated with BCG. The primary outcome was safety; the secondary outcome was cellular immune responses to antigen 85, overlapping peptides of antigen 85A and tuberculin purified protein derivative (PPD) detected by ex vivo interferon-gamma (IFN-γ) ELISpot assay and flow cytometry. Results and Conclusions BCG revaccination (BCG-BCG) was well tolerated, and boosting of pre-existing PPD-specific T cell responses was observed. However, when these results were compared with data from a previous clinical trial, where BCG was boosted with MVA85A (BCG-MVA85A), MVA85A induced significantly higher levels (>2-fold) of antigen 85-specific CD4+ T cells (both antigen and peptide pool responses) than boosting with BCG, up to 52 weeks post-vaccination (p = 0.009). To identify antigen 85A-specific CD8+ T cells that were not detectable by ex vivo ELISpot and flow cytometry, dendritic cells (DC) were used to amplify CD8+ T cells from PBMC samples. We observed low, but detectable levels of antigen 85A-specific CD8+ T cells producing IFNγ (1.5% of total CD8 population) in the BCG primed subjects after BCG boosting in 1 (20%) of 5 subjects. In contrast, in BCG-MVA85A vaccinated subjects, high levels of antigen 85A-specific CD8+ T cells (up to 14% total CD8 population) were observed after boosting with MVA85A, in 4 (50%) of 8 subjects evaluated. In conclusion, revaccination with BCG resulted in modest boosting of pre-existing immune responses to PPD and antigen 85, but vaccination with BCG-MVA85A induced a significantly higher response to antigen 85 and generated a higher frequency of antigen 85A-specific CD8+ T cells. Trial Registration ClinicalTrials.gov NCT00654316 NCT00427830


PLOS ONE | 2007

Boosting BCG with Recombinant Modified Vaccinia Ankara Expressing Antigen 85A: Different Boosting Intervals and Implications for Efficacy Trials

Ansar A. Pathan; Clare R. Sander; Helen A. Fletcher; Ian D. Poulton; Nicola Alder; Natalie E. R. Beveridge; Kathryn T. Whelan; Adrian V. S. Hill; Helen McShane

Objectives To investigate the safety and immunogenicity of boosting BCG with modified vaccinia Ankara expressing antigen 85A (MVA85A), shortly after BCG vaccination, and to compare this first with the immunogenicity of BCG vaccination alone and second with a previous clinical trial where MVA85A was administered more than 10 years after BCG vaccination. Design There are two clinical trials reported here: a Phase I observational trial with MVA85A; and a Phase IV observational trial with BCG. These clinical trials were all conducted in the UK in healthy, HIV negative, BCG naïve adults. Subjects were vaccinated with BCG alone; or BCG and then subsequently boosted with MVA85A four weeks later (short interval). The outcome measures, safety and immunogenicity, were monitored for six months. The immunogenicity results from this short interval BCG prime–MVA85A boost trial were compared first with the BCG alone trial and second with a previous clinical trial where MVA85A vaccination was administered many years after vaccination with BCG. Results MVA85A was safe and highly immunogenic when administered to subjects who had recently received BCG vaccination. When the short interval trial data presented here were compared with the previous long interval trial data, there were no significant differences in the magnitude of immune responses generated when MVA85A was administered shortly after, or many years after BCG vaccination. Conclusions The clinical trial data presented here provides further evidence of the ability of MVA85A to boost BCG primed immune responses. This boosting potential is not influenced by the time interval between prior BCG vaccination and boosting with MVA85A. These findings have important implications for the design of efficacy trials with MVA85A. Boosting BCG induced anti-mycobacterial immunity in either infancy or adolescence are both potential applications for this vaccine, given the immunological data presented here. Trial Registration ClinicalTrials.gov NCT00427453 (short boosting interval), NCT00427830 (long boosting interval), NCT00480714 (BCG alone)

Collaboration


Dive into the Helen A. Fletcher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge