Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iman Satti is active.

Publication


Featured researches published by Iman Satti.


Lancet Infectious Diseases | 2014

Safety and immunogenicity of a candidate tuberculosis vaccine MVA85A delivered by aerosol in BCG-vaccinated healthy adults: a phase 1, double-blind, randomised controlled trial

Iman Satti; Joel Meyer; Stephanie A. Harris; Zita-Rose Manjaly Thomas; Kristin L. Griffiths; Richard D. Antrobus; Rosalind Rowland; Raquel Lopez Ramon; Mary D. Smith; Sharon Sheehan; Henry Bettinson; Helen McShane

Summary Background Intradermal MVA85A, a candidate vaccine against tuberculosis, induces high amounts of Ag85A-specific CD4 T cells in adults who have already received the BCG vaccine, but aerosol delivery of this vaccine might offer immunological and logistical advantages. We did a phase 1 double-blind trial to compare the safety and immunogenicity of aerosol-administered and intradermally administered MVA85A Methods In this phase 1, double-blind, proof-of-concept trial, 24 eligible BCG-vaccinated healthy UK adults were randomly allocated (1:1) by sequentially numbered, sealed, opaque envelopes into two groups: aerosol MVA85A and intradermal saline placebo or intradermal MVA85A and aerosol saline placebo. Participants, the bronchoscopist, and immunologists were masked to treatment assignment. The primary outcome was safety, assessed by the frequency and severity of vaccine-related local and systemic adverse events. The secondary outcome was immunogenicity assessed with laboratory markers of cell-mediated immunity in blood and bronchoalveolar lavage samples. Safety and immunogenicity were assessed for 24 weeks after vaccination. Immunogenicity to both insert Ag85A and vector modified vaccinia virus Ankara (MVA) was assessed by ex-vivo interferon-γ ELISpot and serum ELISAs. Since all participants were randomised and vaccinated according to protocol, our analyses were per protocol. This trial is registered with ClinicalTrials.gov, number NCT01497769. Findings Both administration routes were well tolerated and immunogenic. Respiratory adverse events were rare and mild. Intradermal MVA85A was associated with expected mild local injection-site reactions. Systemic adverse events did not differ significantly between the two groups. Three participants in each group had no vaccine-related systemic adverse events; fatigue (11/24 [46%]) and headache (10/24 [42%]) were the most frequently reported symptoms. Ag85A-specific systemic responses were similar across groups. Ag85A-specific CD4 T cells were detected in bronchoalveolar lavage cells from both groups and responses were higher in the aerosol group than in the intradermal group. MVA-specific cellular responses were detected in both groups, whereas serum antibodies to MVA were only detectable after intradermal administration of the vaccine. Interpretation Further clinical trials assessing the aerosol route of vaccine delivery are merited for tuberculosis and other respiratory pathogens. Funding The Wellcome Trust and Oxford Radcliffe Hospitals Biomedical Research Centre.


Nature Communications | 2016

T-cell activation is an immune correlate of risk in BCG vaccinated infants

Helen A. Fletcher; Margaret Ann Snowden; Bernard Landry; W Rida; Iman Satti; Stephanie A. Harris; Magali Matsumiya; Rachel Tanner; Matthew K. O'Shea; Dheenadhayalan; L Bogardus; Lisa Stockdale; Leanne Marsay; Agnieszka Chomka; Rachel Harrington-Kandt; Zita-Rose Manjaly-Thomas; Naranbhai; Elena Stylianou; Fatoumatta Darboe; Adam Penn-Nicholson; Elisa Nemes; M Hatheril; Gregory D. Hussey; Hassan Mahomed; M. Tameris; Jb McClain; Thomas G. Evans; Willem A. Hanekom; Tom Scriba; Helen McShane

Vaccines to protect against tuberculosis (TB) are urgently needed. We performed a case–control analysis to identify immune correlates of TB disease risk in Bacille Calmette–Guerin (BCG) immunized infants from the MVA85A efficacy trial. Among 53 TB case infants and 205 matched controls, the frequency of activated HLA-DR+ CD4+ T cells associates with increased TB disease risk (OR=1.828, 95% CI=1.25–2.68, P=0.002, FDR=0.04, conditional logistic regression). In an independent study of Mycobacterium tuberculosis-infected adolescents, activated HLA-DR+ CD4+ T cells also associate with increased TB disease risk (OR=1.387, 95% CI=1.068–1.801, P=0.014, conditional logistic regression). In infants, BCG-specific T cells secreting IFN-γ associate with reduced risk of TB (OR=0.502, 95% CI=0.29–0.86, P=0.013, FDR=0.14). The causes and impact of T-cell activation on disease risk should be considered when designing and testing TB vaccine candidates for these populations.


The Lancet Respiratory Medicine | 2015

Safety, immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: a randomised, placebo-controlled, phase 2 trial

Birahim Pierre Ndiaye; Friedrich Thienemann; Martin O. C. Ota; Bernard Landry; Makhtar Camara; Siry Dièye; Tandakha Ndiaye Dieye; Hanif Esmail; Rene Goliath; Kris Huygen; Vanessa January; Ibrahima Ndiaye; Tolu Oni; Michael Raine; Marta Romano; Iman Satti; Sharon Sutton; Aminata Thiam; Katalin A. Wilkinson; Souleymane Mboup; Robert J. Wilkinson; Helen McShane

Summary Background HIV-1 infection is associated with increased risk of tuberculosis and a safe and effective vaccine would assist control measures. We assessed the safety, immunogenicity, and efficacy of a candidate tuberculosis vaccine, modified vaccinia virus Ankara expressing antigen 85A (MVA85A), in adults infected with HIV-1. Methods We did a randomised, double-blind, placebo-controlled, phase 2 trial of MVA85A in adults infected with HIV-1, at two clinical sites, in Cape Town, South Africa and Dakar, Senegal. Eligible participants were aged 18–50 years, had no evidence of active tuberculosis, and had baseline CD4 counts greater than 350 cells per μL if they had never received antiretroviral therapy or greater than 300 cells per μL (and with undetectable viral load before randomisation) if they were receiving antiretroviral therapy; participants with latent tuberculosis infection were eligible if they had completed at least 5 months of isoniazid preventive therapy, unless they had completed treatment for tuberculosis disease within 3 years before randomisation. Participants were randomly assigned (1:1) in blocks of four by randomly generated sequence to receive two intradermal injections of either MVA85A or placebo. Randomisation was stratified by antiretroviral therapy status and study site. Participants, nurses, investigators, and laboratory staff were masked to group allocation. The second (booster) injection of MVA85A or placebo was given 6–12 months after the first vaccination. The primary study outcome was safety in all vaccinated participants (the safety analysis population). Safety was assessed throughout the trial as defined in the protocol. Secondary outcomes were immunogenicity and vaccine efficacy against Mycobacterium tuberculosis infection and disease, assessed in the per-protocol population. Immunogenicity was assessed in a subset of participants at day 7 and day 28 after the first and second vaccination, and M tuberculosis infection and disease were assessed at the end of the study. The trial is registered with ClinicalTrials.gov, number NCT01151189. Findings Between Aug 4, 2011, and April 24, 2013, 650 participants were enrolled and randomly assigned; 649 were included in the safety analysis (324 in the MVA85A group and 325 in the placebo group) and 645 in the per-protocol analysis (320 and 325). 513 (71%) participants had CD4 counts greater than 300 cells per μL and were receiving antiretroviral therapy; 136 (21%) had CD4 counts above 350 cells per μL and had never received antiretroviral therapy. 277 (43%) had received isoniazid prophylaxis before enrolment. Solicited adverse events were more frequent in participants who received MVA85A (288 [89%]) than in those given placebo (235 [72%]). 34 serious adverse events were reported, 17 (5%) in each group. MVA85A induced a significant increase in antigen 85A-specific T-cell response, which peaked 7 days after both vaccinations and was primarily monofunctional. The number of participants with negative QuantiFERON-TB Gold In-Tube findings at baseline who converted to positive by the end of the study was 38 (20%) of 186 in the MVA85A group and 40 (23%) of 173 in the placebo group, for a vaccine efficacy of 11·7% (95% CI −41·3 to 44·9). In the per-protocol population, six (2%) cases of tuberculosis disease occurred in the MVA85A group and nine (3%) occurred in the placebo group, for a vaccine efficacy of 32·8% (95% CI −111·5 to 80·3). Interpretation MVA85A was well tolerated and immunogenic in adults infected with HIV-1. However, we detected no efficacy against M tuberculosis infection or disease, although the study was underpowered to detect an effect against disease. Potential reasons for the absence of detectable efficacy in this trial include insufficient induction of a vaccine-induced immune response or the wrong type of vaccine-induced immune response, or both. Funding European & Developing Countries Clinical Trials Partnership (IP.2007.32080.002), Aeras, Bill & Melinda Gates Foundation, Wellcome Trust, and Oxford-Emergent Tuberculosis Consortium.


Clinical and Vaccine Immunology | 2013

Inhibition of Mycobacterial Growth In Vitro Following Primary but Not Secondary Vaccination with Mycobacterium bovis BCG

Helen A. Fletcher; Rachel Tanner; Robert S. Wallis; Joel Meyer; Zita-Rose Manjaly; Stephanie A. Harris; Iman Satti; Richard F. Silver; Dan Hoft; Beate Kampmann; K. Barry Walker; Hazel M. Dockrell; Uli Fruth; Lew Barker; Michael J. Brennan; Helen McShane

ABSTRACT Despite the widespread use of the Mycobacterium bovis BCG vaccine, there are more than 9 million new cases of tuberculosis (TB) every year, and there is an urgent need for better TB vaccines. TB vaccine candidates are selected for evaluation based in part on the detection of an antigen-specific gamma interferon (IFN-γ) response. The measurement of mycobacterial growth in blood specimens obtained from subjects immunized with investigational TB vaccines may be a better in vitro correlate of in vivo vaccine efficacy. We performed a clinical study with 30 United Kingdom adults who were followed for 6 months to evaluate the abilities of both a whole-blood- and a novel peripheral blood mononuclear cell (PBMC)-based mycobacterial growth inhibition assay to measure a response to primary vaccination and revaccination with BCG. Using cryopreserved PBMCs, we observed a significant improvement in mycobacterial growth inhibition following primary vaccination but no improvement in growth inhibition following revaccination with BCG (P < 0.05). Mycobacterial growth inhibition following primary BCG vaccination was not correlated with purified protein derivative (PPD) antigen-specific IFN-γ enzyme-linked immunospot (ELISPOT) responses. We demonstrate that a mycobacterial growth inhibition assay can detect improved capacity to control growth following primary immunization, but not revaccination, with BCG. This is the first study to demonstrate that an in vitro growth inhibition assay can identify a difference in vaccine responses by comparing both primary and secondary BCG vaccinations, suggesting that in vitro growth inhibition assays may serve as better surrogates of clinical efficacy than the assays currently used for the assessment of candidate TB vaccines.


The Journal of Infectious Diseases | 2012

A Human Challenge Model for Mycobacterium tuberculosis Using Mycobacterium bovis Bacille Calmette-Guérin

Angela M. Minassian; Iman Satti; Ian D. Poulton; Joel Meyer; Adrian V. S. Hill; Helen McShane

(See the editorial commentary by Dockrell, on pages 1029–31.) Background. There is currently no safe human challenge model of Mycobacterium tuberculosis infection to enable proof-of-concept efficacy evaluation of candidate vaccines against tuberculosis. In vivo antimycobacterial immunity could be assessed using intradermal Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination as a surrogate for M. tuberculosis infection. Methods. Healthy BCG-naive and BCG-vaccinated volunteers were challenged with intradermal BCG. BCG load was quantified from skin biopsy specimens by polymerase chain reaction (PCR) and culture colony-forming units. Cellular infiltrate was isolated by suction blisters and examined by flow cytometry. Prechallenge immune readouts were correlated with BCG load after challenge. Results. In BCG-naive volunteers, live BCG was detected at the challenge site for up to 4 weeks and peaked at 2 weeks. Infiltration of mainly CD15+ neutrophils was observed in blister fluid. In previously BCG-vaccinated individuals, PCR analysis of skin biopsy specimens reflected a degree of mycobacterial immunity. There was no significant correlation between BCG load after challenge and mycobacterial-specific memory T cells measured before challenge by cultured enzyme-linked immunospot assay. Conclusions. This novel experimental human challenge model provides a platform for the identification of correlates of antimycobacterial immunity and will greatly facilitate the rational down-selection of candidate tuberculosis vaccines. Further evaluation of this model with BCG and new vaccine candidates is warranted.


The Journal of Infectious Diseases | 2014

Evaluation of a Human BCG Challenge Model to Assess Antimycobacterial Immunity Induced by BCG and a Candidate Tuberculosis Vaccine, MVA85A, Alone and in Combination

Stephanie A. Harris; Joel Meyer; Iman Satti; Leanne Marsay; Ian D. Poulton; Rachel Tanner; Angela M. Minassian; Helen A. Fletcher; Helen McShane

Background. A new vaccine is urgently needed to combat tuberculosis. However, without a correlate of protection, selection of the vaccines to take forward into large-scale efficacy trials is difficult. Use of bacille Calmette-Guérin (BCG) as a surrogate for human Mycobacterium tuberculosis challenge is a novel model that could aid selection. Methods. Healthy adults were assigned to groups A and B (BCG-naive) or groups C and D (BCG-vaccinated). Groups B and D received candidate tuberculosis vaccine MVA85A. Participants were challenged with intradermal BCG 4 weeks after those who received MVA85A. Skin biopsies of the challenge site were taken 2 weeks post challenge and BCG load quantified by culture and quantitative polymerase chain reaction (qPCR). Results. Volunteers with a history of BCG showed some degree of protective immunity to challenge, having lower BCG loads compared with volunteers without prior BCG, regardless of MVA85A status. There was a significant inverse correlation between antimycobacterial immunity at peak response after MVA85A and BCG load detected by qPCR. Conclusion. Our results support previous findings that this BCG challenge model is able to detect differences in antimycobacterial immunity induced by vaccination and could aid in the selection of candidate tuberculosis vaccines for field efficacy testing. Clinical Trials Registration NCT01194180.


BMJ Open | 2011

A Phase I study evaluating the safety and immunogenicity of MVA85A, a candidate TB vaccine, in HIV-infected adults

Angela M. Minassian; Rosalind Rowland; Natalie E. R. Beveridge; Ian D. Poulton; Iman Satti; Stephanie A. Harris; Hazel C. Poyntz; Matthew Hamill; Kristin L. Griffiths; Clare R. Sander; David R. Ambrozak; David A. Price; Brenna J. Hill; Joseph P. Casazza; Richard A. Koup; Mario Roederer; Alan Winston; Jonathan Ross; Jackie Sherrard; Guy Rooney; Nicola Williams; Alison M. Lawrie; Helen A. Fletcher; Ansar A. Pathan; Helen McShane

Objectives Control of the tuberculosis (TB) epidemic is a global health priority and one that is likely to be achieved only through vaccination. The critical overlap with the HIV epidemic requires any effective TB vaccine regimen to be safe in individuals who are infected with HIV. The objectives of this clinical trial were to evaluate the safety and immunogenicity of a leading candidate TB vaccine, MVA85A, in healthy, HIV-infected adults. Design This was an open-label Phase I trial, performed in 20 healthy HIV-infected, antiretroviral-naïve subjects. Two different doses of MVA85A were each evaluated as a single immunisation in 10 subjects, with 24 weeks of follow-up. The safety of MVA85A was assessed by clinical and laboratory markers, including regular CD4 counts and HIV RNA load measurements. Vaccine immunogenicity was assessed by ex vivo interferon γ (IFN-γ) ELISpot assays and flow-cytometric analysis. Results MVA85A was safe in subjects with HIV infection, with an adverse-event profile comparable with historical data from previous trials in HIV-uninfected subjects. There were no clinically significant vaccine-related changes in CD4 count or HIV RNA load in any subjects, and no evidence from qPCR analyses to indicate that MVA85A vaccination leads to widespread preferential infection of vaccine-induced CD4 T cell populations. Both doses of MVA85A induced an antigen-specific IFN-γ response that was durable for 24 weeks, although of a lesser magnitude compared with historical data from HIV-uninfected subjects. The functional quality of the vaccine-induced T cell response in HIV-infected subjects was remarkably comparable with that observed in healthy HIV-uninfected controls, but less durable. Conclusion MVA85A is safe and immunogenic in healthy adults infected with HIV. Further safety and efficacy evaluation of this candidate vaccine in TB- and HIV-endemic areas is merited.


Vaccine | 2013

Comparing the safety and immunogenicity of a candidate TB vaccine MVA85A administered by intramuscular and intradermal delivery

Joel Meyer; Stephanie A. Harris; Iman Satti; Ian D. Poulton; Hazel C. Poyntz; Rachel Tanner; Rosalind Rowland; Kristin L. Griffiths; Helen A. Fletcher; Helen McShane

Highlights ► Candidate TB vaccine MVA85A is well tolerated intramuscularly or intradermally. ► Both routes are highly immunogenic. ► MVA85A-induced CD4+ T cell cytokine production was similar between the two routes.


PLOS ONE | 2015

Intracellular Cytokine Staining and Flow Cytometry: Considerations for Application in Clinical Trials of Novel Tuberculosis Vaccines.

Steven G. Smith; Kaatje Smits; Simone A. Joosten; Krista E. van Meijgaarden; Iman Satti; Helen A. Fletcher; Nadia Caccamo; Francesco Dieli; Françoise Mascart; Helen McShane; Hazel M. Dockrell; Tom H. M. Ottenhoff

Intracellular cytokine staining combined with flow cytometry is one of a number of assays designed to assess T-cell immune responses. It has the specific advantage of enabling the simultaneous assessment of multiple phenotypic, differentiation and functional parameters pertaining to responding T-cells, most notably, the expression of multiple effector cytokines. These attributes make the technique particularly suitable for the assessment of T-cell immune responses induced by novel tuberculosis vaccines in clinical trials. However, depending upon the particular nature of a given vaccine and trial setting, there are approaches that may be taken at different stages of the assay that are more suitable than other alternatives. In this paper, the Tuberculosis Vaccine Initiative (TBVI) TB Biomarker Working group reports on efforts to assess the conditions that will determine when particular assay approaches should be employed. We have found that choices relating to the use of fresh whole blood or peripheral blood mononuclear cells (PBMC) and frozen PBMC; use of serum-containing or serum-free medium; length of stimulation period and use of co-stimulatory antibodies can all affect the sensitivity of intracellular cytokine assays. In the case of sample material, frozen PBMC, despite some loss of sensitivity, may be more advantageous for batch analysis. We also recommend that for multi-site studies, common antibody panels, gating strategies and analysis approaches should be employed for better comparability.


Human Vaccines & Immunotherapeutics | 2013

Safety and immunogenicity of an FP9-vectored candidate tuberculosis vaccine (FP85A), alone and with candidate vaccine MVA85A in BCG-vaccinated healthy adults: A phase I clinical trial

Rosalind Rowland; Ansar A. Pathan; Iman Satti; Ian D. Poulton; Magali Matsumiya; Megan Whittaker; Angela M. Minassian; Geraldine A. O'Hara; Matthew Hamill; Janet T. Scott; Stephanie A. Harris; Hazel C. Poyntz; Cynthia Bateman; Joel Meyer; Nicola Williams; Sarah C. Gilbert; Alison M. Lawrie; Adrian V. S. Hill; Helen McShane

The safety and immunogenicity of a new candidate tuberculosis (TB) vaccine, FP85A was evaluated alone and in heterologous prime-boost regimes with another candidate TB vaccine, MVA85A. This was an open label, non-controlled, non-randomized Phase I clinical trial. Healthy previously BCG-vaccinated adult subjects were enrolled sequentially into three groups and vaccinated with FP85A alone, or both FP85A and MVA85A, with a four week interval between vaccinations. Passive and active data on adverse events were collected. Immunogenicity was evaluated by Enzyme Linked Immunospot (ELISpot), flow cytometry and Enzyme Linked Immunosorbent assay (ELISA). Most adverse events were mild and there were no vaccine-related serious adverse events. FP85A vaccination did not enhance antigen 85A-specific cellular immunity. When MVA85A vaccination was preceded by FP85A vaccination, cellular immune responses were lower compared with when MVA85A vaccination was the first immunisation. MVA85A vaccination, but not FP85A vaccination, induced anti-MVA IgG antibodies. Both MVA85A and FP85A vaccinations induced anti-FP9 IgG antibodies. In conclusion, FP85A vaccination was well tolerated but did not induce antigen-specific cellular immune responses. We hypothesize that FP85A induced anti-FP9 IgG antibodies with cross-reactivity for MVA85A, which may have mediated inhibition of the immune response to subsequent MVA85A. ClinicalTrials.gov identification number: NCT00653770

Collaboration


Dive into the Iman Satti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge