Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helen B. Pearson is active.

Publication


Featured researches published by Helen B. Pearson.


Journal of Clinical Investigation | 2011

SCRIB expression is deregulated in human prostate cancer, and its deficiency in mice promotes prostate neoplasia

Helen B. Pearson; Pedro A. Pérez-Mancera; Lukas E. Dow; Andrew Ryan; Pierre Tennstedt; Debora Bogani; Imogen A. Elsum; Andy Greenfield; David A. Tuveson; Ronald Simon; Patrick O. Humbert

Loss of cellular polarity is a hallmark of epithelial cancers, raising the possibility that regulators of polarity have a role in suppressing tumorigenesis. The Scribble complex is one of at least three interacting protein complexes that have a critical role in establishing and maintaining epithelial polarity. In human colorectal, breast, and endometrial cancers, expression of the Scribble complex member SCRIB is often mislocalized and deregulated. Here, we report that Scrib is indispensable for prostate homeostasis in mice. Scrib heterozygosity initiated prostate hyperplasia, while targeted biallelic Scrib loss predisposed mice to prostate intraepithelial neoplasia. Mechanistically, Scrib was shown to negatively regulate the MAPK cascade to suppress tumorigenesis. Further analysis revealed that prostate-specific loss of Scrib in mice combined with expression of an oncogenic Kras mutation promoted the progression of prostate cancer that recapitulated the human disease. The clinical significance of the work in mice was highlighted by our observation that SCRIB deregulation strongly correlated with poor survival in human prostate cancer. These data suggest that the polarity network could provide a new avenue for therapeutic intervention.


Cancer Research | 2008

Lkb1 deficiency causes prostate neoplasia in the mouse

Helen B. Pearson; Afshan McCarthy; Christopher M.P. Collins; Alan Ashworth; Alan Richard Clarke

Mutation of LKB1 is the key molecular event underlying Peutz-Jeghers syndrome, a dominantly inherited condition characterized by a predisposition to a range of malignancies, including those of the reproductive system. We report here the use of a Cre-LoxP strategy to directly address the role of Lkb1 in prostate neoplasia. Recombination of a LoxP-flanked Lkb1 allele within all four murine prostate lobes was mediated by spontaneous activation of a p450 CYP1A1-driven Cre recombinase transgene (termed AhCre). Homozygous mutation of Lkb1 in males expressing AhCre reduced longevity, with 100% manifesting atypical hyperplasia and 83% developing prostate intraepithelial neoplasia (PIN) of the anterior prostate within 2 to 4 months. We also observed focal hyperplasia of the dorsolateral and ventral lobes (61% and 56% incidence, respectively), bulbourethral gland cysts associated with atypical hyperplasia (100% incidence), hyperplasia of the urethra (39% incidence), and seminal vesicle squamous metaplasia (11% incidence). PIN foci overexpressed nuclear beta-catenin, p-Gsk3 beta, and downstream Wnt targets. Immunohistochemical analysis of foci also showed a reduction in Pten activation and up-regulation of both p-PDK1 (an AMPK kinase) and phosphorylated Akt. Our data are therefore consistent with deregulation of Wnt and phosphoinositide 3-kinase/Akt signaling cascades after loss of Lkb1 function. For the first time, this model establishes a link between the tumor suppressor Lkb1 and prostate neoplasia, highlighting a tumor suppressive role within the mouse and raising the possibility of a similar association in the human.


Cancer Research | 2009

K-ras and Wnt Signaling Synergize to Accelerate Prostate Tumorigenesis in the Mouse

Helen B. Pearson; Toby J. Phesse; Alan Richard Clarke

Aberrant Ras and Wnt signaling are emerging as key events in the multistep nature of prostate tumorigenesis and progression. Here, we report the generation of a compound model of prostate cancer to define the synergism of activated K-ras (K-ras(+/V12)) and dominant stabilized beta-catenin (Catnb(+/lox(ex3))) in the murine prostate. Recombination of floxed alleles and subsequent expression of oncogenic transgenes was mediated by Cre recombinase expression governed by the composite Probasin (PB) promoter (termed PBCre). Concomitant with elevated mitogen-activated protein kinase (MAPK) signaling, PBCre(+)K-ras(+/V12) mice developed AH at 100 days (100% incidence) and low-grade prostate intraepithelial neoplasia and adenocarcinoma (60% and 7% incidence) by 500 days. PBCre(+)Catnb(+/lox(ex3)) mice showed reduced longevity (average 428 days) and were predisposed to PIN-like keratinized squamous metaplasia at 100 days (100% incidence) and adenocarcinoma (100% incidence) at end-point. These lesions displayed elevated Wnt signaling and basal levels of MAPK signaling. Synchronous activation of K-ras and beta-catenin significantly reduced survival (average 189 days), reflecting accelerated tumorigenesis and the development of invasive carcinoma that displayed activated Wnt and MAPK signaling. Notably, expression of the basal cell marker p63 negatively correlated with tumor grade, resembling human prostate adenocarcinoma. Taken together, our data show that combinatorial oncogenic mutations of K-ras and beta-catenin drive rapid progression of prostate tumorigenesis to invasive carcinoma, characterized by the synergistic elevation of androgen receptor, cyclooxygenase-2, and c-Myc.


PLOS ONE | 2009

Lkb1 Deficiency Alters Goblet and Paneth Cell Differentiation in the Small Intestine

Boris Shorning; Joanna Zabkiewicz; Afshan McCarthy; Helen B. Pearson; Douglas J. Winton; Owen J. Sansom; Alam Ashworth; Alan Richard Clarke

The Lkb1 tumour suppressor is a multitasking kinase participating in a range of physiological processes. We have determined the impact of Lkb1 deficiency on intestinal homeostasis, particularly focussing on secretory cell differentiation and development since we observe strong expression of Lkb1 in normal small intestine Paneth and goblet cells. We crossed mice bearing an Lkb1 allele flanked with LoxP sites with those carrying a Cyp1a1-specific inducible Cre recombinase. Lkb1 was efficiently deleted from the epithelial cells of the mouse intestine after intraperitoneal injection of the inducing agent β-naphthoflavone. Bi-allelic loss of Lkb1 led to the perturbed development of Paneth and goblet cell lineages. These changes were characterised by the lack of Delta ligand expression in Lkb1-deficient secretory cells and a significant increase in the levels of the downstream Notch signalling effector Hes5 but not Hes1. Our data show that Lkb1 is required for the normal differentiation of secretory cell lineages within the intestine, and that Lkb1 deficiency modulates Notch signalling modulation in post-mitotic cells.


Cell Death & Differentiation | 2014

Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo

Toby J. Phesse; Kevin Myant; Alicia M. Cole; Rachel A. Ridgway; Helen B. Pearson; Vanesa Muncan; G R van den Brink; Karen H. Vousden; Rosalie C. Sears; L . T . Vassilev; Alan Richard Clarke; Owen J. Sansom

Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein.


ACS Chemical Biology | 2013

Increasing Intracellular Bioavailable Copper Selectively Targets Prostate Cancer Cells

Michael A. Cater; Helen B. Pearson; Kamil Wolyniec; Paul Klaver; Maree Bilandzic; Brett M. Paterson; Ashley I. Bush; Patrick O. Humbert; Sharon La Fontaine; Paul S. Donnelly; Ygal Haupt

The therapeutic efficacy of two bis(thiosemicarbazonato) copper complexes, glyoxalbis[N4-methylthiosemicarbazonato]Cu(II) [Cu(II)(gtsm)] and diacetylbis[N4-methylthiosemicarbazonato]Cu(II) [Cu(II)(atsm)], for the treatment of prostate cancer was assessed in cell culture and animal models. Distinctively, copper dissociates intracellularly from Cu(II)(gtsm) but is retained by Cu(II)(atsm). We further demonstrated that intracellular H2gtsm [reduced Cu(II)(gtsm)] continues to redistribute copper into a bioavailable (exchangeable) pool. Both Cu(II)(gtsm) and Cu(II)(atsm) selectively kill transformed (hyperplastic and carcinoma) prostate cell lines but, importantly, do not affect the viability of primary prostate epithelial cells. Increasing extracellular copper concentrations enhanced the therapeutic capacity of both Cu(II)(gtsm) and Cu(II)(atsm), and their ligands (H2gtsm and H2atsm) were toxic only toward cancerous prostate cells when combined with copper. Treatment of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model with Cu(II)(gtsm) (2.5 mg/kg) significantly reduced prostate cancer burden (∼70%) and severity (grade), while treatment with Cu(II)(atsm) (30 mg/kg) was ineffective at the given dose. However, Cu(II)(gtsm) caused mild kidney toxicity in the mice, associated primarily with interstitial nephritis and luminal distention. Mechanistically, we demonstrated that Cu(II)(gtsm) inhibits proteasomal chymotrypsin-like activity, a feature further established as being common to copper-ionophores that increase intracellular bioavailable copper. We have demonstrated that increasing intracellular bioavailable copper can selectively kill cancerous prostate cells in vitro and in vivo and have revealed the potential for bis(thiosemicarbazone) copper complexes to be developed as therapeutics for prostate cancer.


Science Signaling | 2014

Partial inhibition of gp130-Jak-Stat3 signaling prevents Wnt-β-catenin-mediated intestinal tumor growth and regeneration.

Toby J. Phesse; Michael Buchert; Emma Stuart; Dustin J. Flanagan; Maree C. Faux; Shoukat Afshar-Sterle; Francesca Walker; Hui-Hua Zhang; Cameron J. Nowell; Robert N. Jorissen; Chin Wee Tan; Yumiko Hirokawa; Moritz F. Eissmann; Ashleigh R. Poh; Jordane Malaterre; Helen B. Pearson; David G. Kirsch; Paolo Provero; Valeria Poli; Robert G. Ramsay; Oliver M. Sieber; Antony W. Burgess; Dennis Huszar; Elizabeth Vincan; Matthias Ernst

Partial suppression of the inflammatory gp130-Jak-Stat pathway inhibits intestinal tumor growth. A Novel Strategy for Treating Colon Cancer In most patients, colon cancer arises from a mutation in the gene encoding APC, which results in constitutive activation of the β-catenin pathway. Inhibition of this pathway interferes with the continuous renewal of the epithelial cells that line the intestinal tract and therefore may confer only limited therapeutic benefit. Phesse et al. discovered that the signaling pathway involving the receptor gp130, the associated Jak kinases, and the transcription factor Stat3 enhanced the growth of intestinal tumors in mice. Conversely, genetic or pharmacological inhibition of this pathway reduced tumor growth by increasing the expression of genes encoding the p21 and p16 proteins that halt cell division, through a cell-intrinsic mechanism. Thus, drugs targeting the Jak-Stat3 pathway, which are currently in clinical trials for the treatment of hematological malignancies, may also be useful for treating colon cancer. Most colon cancers arise from somatic mutations in the tumor suppressor gene APC (adenomatous polyposis coli), and these mutations cause constitutive activation of the Wnt–to–β-catenin pathway in the intestinal epithelium. Because Wnt–β-catenin signaling is required for homeostasis and regeneration of the adult intestinal epithelium, therapeutic targeting of this pathway is challenging. We found that genetic activation of the cytokine-stimulated pathway mediated by the receptor gp130, the associated Jak (Janus kinase) kinases, and the transcription factor Stat3 (signal transducer and activator of transcription 3) was required for intestinal regeneration in response to irradiation-induced damage in wild-type mice and for tumorigenesis in Apc-mutant mice. Systemic pharmacological or partial genetic inhibition of gp130-Jak-Stat3 signaling suppressed intestinal regeneration, the growth of tumors in Apc-mutant mice, and the growth of colon cancer xenografts. The growth of Apc-mutant tumors depended on gp130-Jak-Stat3 signaling for induction of the polycomb repressor Bmi-1, and the associated repression of genes encoding the cell cycle inhibitors p16 and p21. However, suppression of gp130-Jak-Stat3 signaling did not affect Wnt–β-catenin signaling or homeostasis in the intestine. Thus, these data not only suggest a molecular mechanism for how the gp130-Jak-Stat3 pathway can promote cancer but also provide a rationale for therapeutic inhibition of Jak in colon cancer.


Disease Models & Mechanisms | 2015

Functional and molecular characterisation of EO771.LMB tumours, a new C57BL/6-mouse-derived model of spontaneously metastatic mammary cancer

Cameron N. Johnstone; Yvonne E. Smith; Yuan Cao; Allan D. Burrows; Ryan S. Cross; Xiawei Ling; Richard P. Redvers; Judy P. Doherty; Bedrich L. Eckhardt; Anthony Natoli; Christina Restall; Erin Lucas; Helen B. Pearson; Siddhartha Deb; Kara L. Britt; Alexandra Rizzitelli; Jason Li; Judith H. Harmey; Normand Pouliot; Robin L. Anderson

The translation of basic research into improved therapies for breast cancer patients requires relevant preclinical models that incorporate spontaneous metastasis. We have completed a functional and molecular characterisation of a new isogenic C57BL/6 mouse model of breast cancer metastasis, comparing and contrasting it with the established BALB/c 4T1 model. Metastatic EO771.LMB tumours were derived from poorly metastatic parental EO771 mammary tumours. Functional differences were evaluated using both in vitro assays and spontaneous metastasis assays in mice. Results were compared to non-metastatic 67NR and metastatic 4T1.2 tumours of the 4T1 model. Protein and transcript levels of markers of human breast cancer molecular subtypes were measured in the four tumour lines, as well as p53 (Tp53) tumour-suppressor gene status and responses to tamoxifen in vivo and in vitro. Array-based expression profiling of whole tumours identified genes and pathways that were deregulated in metastatic tumours. EO771.LMB cells metastasised spontaneously to lung in C57BL/6 mice and displayed increased invasive capacity compared with parental EO771. By immunohistochemical assessment, EO771 and EO771.LMB were basal-like, as was the 4T1.2 tumour, whereas 67NR had a luminal phenotype. Primary tumours from all lines were negative for progesterone receptor, Erb-b2/Neu and cytokeratin 5/6, but positive for epidermal growth factor receptor (EGFR). Only 67NR displayed nuclear estrogen receptor alpha (ERα) positivity. EO771 and EO771.LMB expressed mutant p53, whereas 67NR and 4T1.2 were p53-null. Integrated molecular analysis of both the EO771/EO771.LMB and 67NR/4T1.2 pairs indicated that upregulation of matrix metalloproteinase-3 (MMP-3), parathyroid hormone-like hormone (Pthlh) and S100 calcium binding protein A8 (S100a8) and downregulation of the thrombospondin receptor (Cd36) might be causally involved in metastatic dissemination of breast cancer.


PLOS Genetics | 2014

Scribble Modulates the MAPK/Fra1 Pathway to Disrupt Luminal and Ductal Integrity and Suppress Tumour Formation in the Mammary Gland

Nathan Godde; Julie Sheridan; Lorey K. Smith; Helen B. Pearson; Kara L. Britt; Ryan Galea; Laura Yates; Jane E. Visvader; Patrick O. Humbert

Polarity coordinates cell movement, differentiation, proliferation and apoptosis to build and maintain complex epithelial tissues such as the mammary gland. Loss of polarity and the deregulation of these processes are critical events in malignant progression but precisely how and at which stage polarity loss impacts on mammary development and tumourigenesis is unclear. Scrib is a core polarity regulator and tumour suppressor gene however to date our understanding of Scrib function in the mammary gland has been limited to cell culture and transplantation studies of cell lines. Utilizing a conditional mouse model of Scrib loss we report for the first time that Scrib is essential for mammary duct morphogenesis, mammary progenitor cell fate and maintenance, and we demonstrate a critical and specific role for Scribble in the control of the early steps of breast cancer progression. In particular, Scrib-deficiency significantly induced Fra1 expression and basal progenitor clonogenicity, which resulted in fully penetrant ductal hyperplasia characterized by high cell turnover, MAPK hyperactivity, frank polarity loss with mixing of apical and basolateral membrane constituents and expansion of atypical luminal cells. We also show for the first time a role for Scribble in mammalian spindle orientation with the onset of mammary hyperplasia being associated with aberrant luminal cell spindle orientation and a failure to apoptose during the final stage of duct tubulogenesis. Restoring MAPK/Fra1 to baseline levels prevented Scrib-hyperplasia, whereas persistent Scrib deficiency induced alveolar hyperplasia and increased the incidence, onset and grade of mammary tumours. These findings, based on a definitive genetic mouse model provide fundamental insights into mammary duct maturation and homeostasis and reveal that Scrib loss activates a MAPK/Fra1 pathway that alters mammary progenitor activity to drive premalignancy and accelerate tumour progression.


Oncogene | 2014

Scrib heterozygosity predisposes to lung cancer and cooperates with KRas hyperactivation to accelerate lung cancer progression in vivo.

Imogen A. Elsum; L. L. Yates; Helen B. Pearson; Toby J. Phesse; F Long; Robert J.J. O'Donoghue; Matthias Ernst; Carleen Cullinane; Patrick O. Humbert

Lung cancer is the leading cause of cancer deaths worldwide with non small-cell lung cancer (NSCLC) accounting for 80% of all lung cancers. Although activating mutations in genes of the RAS-MAPK pathway occur in up to 30% of all NSCLC, the cooperating genetic lesions that are required for lung cancer initiation and progression remain poorly understood. Here we identify a role for the cell polarity regulator Scribble (Scrib) in NSCLC. A survey of genomic databases reveals deregulation of SCRIB in human lung cancer and we show that Scrib+/− mutant mice develop lung cancer by 540 days with a penetrance of 43%. To model NSCLC development in vivo, we used the extensively characterized LSL-KRasG12D murine model of NSCLC. We show that loss of Scrib and activated oncogenic KRas cooperate in vivo, resulting in more aggressive lung tumors, likely due to a synergistic elevation in RAS–MAPK signaling. Finally, we provide data consistent with immune infiltration having an important role in the acceleration of tumorigenesis in KRasG12D lung tumors following Scrib loss.

Collaboration


Dive into the Helen B. Pearson's collaboration.

Top Co-Authors

Avatar

Patrick O. Humbert

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Normand Pouliot

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Luc Furic

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Nathan Godde

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Richard J. Rebello

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Wayne A. Phillips

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Imogen A. Elsum

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge