Helen Beasley
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helen Beasley.
Nature | 2013
Isheng J. Tsai; Magdalena Zarowiecki; Nancy Holroyd; Alejandro Garciarrubio; Alejandro Sanchez-Flores; Karen Brooks; Alan Tracey; Raúl J. Bobes; Gladis Fragoso; Edda Sciutto; Martin Aslett; Helen Beasley; Hayley M. Bennett; Jianping Cai; Federico Camicia; Richard M. Clark; Marcela Cucher; Nishadi De Silva; Tim A. Day; Peter Deplazes; Karel Estrada; Cecilia Fernández; Peter W. H. Holland; Junling Hou; Songnian Hu; Thomas Huckvale; Stacy S. Hung; Laura Kamenetzky; Jacqueline A. Keane; Ferenc Kiss
Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.
Nature | 2011
Mathieu Joron; Lise Frézal; Robert T. Jones; Nicola Chamberlain; Siu Fai Lee; Christoph R. Haag; Annabel Whibley; Michel Becuwe; Simon W. Baxter; Laura Ferguson; Paul Wilkinson; Camilo Salazar; Claire Davidson; Richard Clark; Michael A. Quail; Helen Beasley; Rebecca Glithero; Christine Lloyd; Sarah Sims; Matthew C. Jones; Jane Rogers; Chris D. Jiggins; Richard H. ffrench-Constant
Supergenes are tight clusters of loci that facilitate the co-segregation of adaptive variation, providing integrated control of complex adaptive phenotypes. Polymorphic supergenes, in which specific combinations of traits are maintained within a single population, were first described for ‘pin’ and ‘thrum’ floral types in Primula and Fagopyrum, but classic examples are also found in insect mimicry and snail morphology. Understanding the evolutionary mechanisms that generate these co-adapted gene sets, as well as the mode of limiting the production of unfit recombinant forms, remains a substantial challenge. Here we show that individual wing-pattern morphs in the polymorphic mimetic butterfly Heliconius numata are associated with different genomic rearrangements at the supergene locus P. These rearrangements tighten the genetic linkage between at least two colour-pattern loci that are known to recombine in closely related species, with complete suppression of recombination being observed in experimental crosses across a 400-kilobase interval containing at least 18 genes. In natural populations, notable patterns of linkage disequilibrium (LD) are observed across the entire P region. The resulting divergent haplotype clades and inversion breakpoints are found in complete association with wing-pattern morphs. Our results indicate that allelic combinations at known wing-patterning loci have become locked together in a polymorphic rearrangement at the P locus, forming a supergene that acts as a simple switch between complex adaptive phenotypes found in sympatry. These findings highlight how genomic rearrangements can have a central role in the coexistence of adaptive phenotypes involving several genes acting in concert, by locally limiting recombination and gene flow.
PLOS Biology | 2006
Mathieu Joron; Riccardo Papa; Margarita Beltrán; Nicola Chamberlain; Jesús Mavárez; Simon W. Baxter; Moisés Abanto; Eldredge Bermingham; Sean Humphray; Jane Rogers; Helen Beasley; Karen Barlow; Richard H. ffrench-Constant; James Mallet; W. Owen McMillan; Chris D. Jiggins
We studied whether similar developmental genetic mechanisms are involved in both convergent and divergent evolution. Mimetic insects are known for their diversity of patterns as well as their remarkable evolutionary convergence, and they have played an important role in controversies over the respective roles of selection and constraints in adaptive evolution. Here we contrast three butterfly species, all classic examples of Müllerian mimicry. We used a genetic linkage map to show that a locus, Yb, which controls the presence of a yellow band in geographic races of Heliconius melpomene, maps precisely to the same location as the locus Cr, which has very similar phenotypic effects in its co-mimic H. erato. Furthermore, the same genomic location acts as a “supergene”, determining multiple sympatric morphs in a third species, H. numata. H. numata is a species with a very different phenotypic appearance, whose many forms mimic different unrelated ithomiine butterflies in the genus Melinaea. Other unlinked colour pattern loci map to a homologous linkage group in the co-mimics H. melpomene and H. erato, but they are not involved in mimetic polymorphism in H. numata. Hence, a single region from the multilocus colour pattern architecture of H. melpomene and H. erato appears to have gained control of the entire wing-pattern variability in H. numata, presumably as a result of selection for mimetic “supergene” polymorphism without intermediates. Although we cannot at this stage confirm the homology of the loci segregating in the three species, our results imply that a conserved yet relatively unconstrained mechanism underlying pattern switching can affect mimicry in radically different ways. We also show that adaptive evolution, both convergent and diversifying, can occur by the repeated involvement of the same genomic regions.
Genome Biology | 2013
Roz Laing; Taisei Kikuchi; Axel Martinelli; Isheng J. Tsai; Robin N. Beech; Elizabeth Redman; Nancy Holroyd; David J. Bartley; Helen Beasley; Collette Britton; David M. Curran; Eileen Devaney; Aude Gilabert; Martin Hunt; Frank Jackson; Stephanie L Johnston; Ivan Kryukov; Keyu Li; Alison A. Morrison; Adam J. Reid; Neil Sargison; Gary Ian Saunders; James D. Wasmuth; Adrian J. Wolstenholme; Matthew Berriman; John S. Gilleard; James A. Cotton
BackgroundThe small ruminant parasite Haemonchus contortus is the most widely used parasitic nematode in drug discovery, vaccine development and anthelmintic resistance research. Its remarkable propensity to develop resistance threatens the viability of the sheep industry in many regions of the world and provides a cautionary example of the effect of mass drug administration to control parasitic nematodes. Its phylogenetic position makes it particularly well placed for comparison with the free-living nematode Caenorhabditis elegans and the most economically important parasites of livestock and humans.ResultsHere we report the detailed analysis of a draft genome assembly and extensive transcriptomic dataset for H. contortus. This represents the first genome to be published for a strongylid nematode and the most extensive transcriptomic dataset for any parasitic nematode reported to date. We show a general pattern of conservation of genome structure and gene content between H. contortus and C. elegans, but also a dramatic expansion of important parasite gene families. We identify genes involved in parasite-specific pathways such as blood feeding, neurological function, and drug metabolism. In particular, we describe complete gene repertoires for known drug target families, providing the most comprehensive understanding yet of the action of several important anthelmintics. Also, we identify a set of genes enriched in the parasitic stages of the lifecycle and the parasite gut that provide a rich source of vaccine and drug target candidates.ConclusionsThe H. contortus genome and transcriptome provide an essential platform for postgenomic research in this and other important strongylid parasites.
Genome Biology | 2014
James A. Cotton; Catherine J. Lilley; Laura M. Jones; Taisei Kikuchi; Adam J. Reid; Peter Thorpe; Isheng J. Tsai; Helen Beasley; Vivian C. Blok; Peter J. A. Cock; Sebastian Eves-van den Akker; Nancy Holroyd; Martin Hunt; Sophie Mantelin; Hardeep Naghra; Arnab Pain; Juan E. Palomares-Rius; Magdalena Zarowiecki; Matthew Berriman; John T. Jones; Peter E. Urwin
BackgroundGlobodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes. It is also an important model for the biology of cyst nematodes. Cyst nematodes and root-knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security.ResultsWe present the complete genome sequence of G. pallida, together with transcriptomic data from most of the nematode life cycle, particularly focusing on the life cycle stages involved in root invasion and establishment of the biotrophic feeding site. Despite the relatively close phylogenetic relationship with root-knot nematodes, we describe a very different gene family content between the two groups and in particular extensive differences in the repertoire of effectors, including an enormous expansion of the SPRY domain protein family in G. pallida, which includes the SPRYSEC family of effectors. This highlights the distinct biology of cyst nematodes compared to the root-knot nematodes that were, until now, the only sedentary plant parasitic nematodes for which genome information was available. We also present in-depth descriptions of the repertoires of other genes likely to be important in understanding the unique biology of cyst nematodes and of potential drug targets and other targets for their control.ConclusionsThe data and analyses we present will be central in exploiting post-genomic approaches in the development of much-needed novel strategies for the control of G. pallida and related pathogens.
Molecular Ecology | 2010
Laura Ferguson; Siu Fai Lee; Nicola Chamberlain; Nicola J. Nadeau; Mathieu Joron; Simon W. Baxter; Paul Wilkinson; Alexie Papanicolaou; Sujai Kumar; Thuan Jin Kee; Richard Clark; Claire Davidson; Rebecca Glithero; Helen Beasley; Heiko Vogel; Richard H. ffrench-Constant; Chris D. Jiggins
The mimetic wing patterns of Heliconius butterflies are an excellent example of both adaptive radiation and convergent evolution. Alleles at the HmYb and HmSb loci control the presence/absence of hindwing bar and hindwing margin phenotypes respectively between divergent races of Heliconius melpomene, and also between sister species. Here, we used fine‐scale linkage mapping to identify and sequence a BAC tilepath across the HmYb/Sb loci. We also generated transcriptome sequence data for two wing pattern forms of H. melpomene that differed in HmYb/Sb alleles using 454 sequencing technology. Custom scripts were used to process the sequence traces and generate transcriptome assemblies. Genomic sequence for the HmYb/Sb candidate region was annotated both using the MAKER pipeline and manually using transcriptome sequence reads. In total, 28 genes were identified in the HmYb/Sb candidate region, six of which have alternative splice forms. None of these are orthologues of genes previously identified as being expressed in butterfly wing pattern development, implying previously undescribed molecular mechanisms of pattern determination on Heliconius wings. The use of next‐generation sequencing has therefore facilitated DNA annotation of a poorly characterized genome, and generated hypotheses regarding the identity of wing pattern at the HmYb/Sb loci.
Methods of Molecular Biology | 2012
Michael A. Quail; Lucy Matthews; Sarah Sims; Christine Lloyd; Helen Beasley; Simon W. Baxter
Sequencing large insert clones to completion is useful for characterizing specific genomic regions, identifying haplotypes, and closing gaps in whole genome sequencing projects. Despite being a standard technique in molecular laboratories, DNA sequencing using the Sanger method can be highly problematic when complex secondary structures or sequence repeats are encountered in genomic clones. Here, we describe methods to isolate DNA from a large insert clone (fosmid or BAC), subclone the sample, and sequence the region to the highest industry standard. Troubleshooting solutions for sequencing difficult templates are discussed.
Methods of Molecular Biology | 2012
Michael A. Quail; Lucy Matthews; Sarah Sims; Christine Lloyd; Helen Beasley; Simon W. Baxter
Large insert genome libraries have been a core resource required to sequence genomes, analyze haplotypes, and aid gene discovery. While next generation sequencing technologies are revolutionizing the field of genomics, traditional genome libraries will still be required for accurate genome assembly. Their utility is also being extended to functional studies for understanding DNA regulatory elements. Here, we present a detailed method for constructing genomic fosmid libraries, testing for common contaminants, gridding the library to nylon membranes, then hybridizing the library membranes with a radiolabeled probe to identify corresponding genomic clones. While this chapter focuses on fosmid libraries, many of these steps can also be applied to bacterial artificial chromosome libraries.
Genomics | 2006
Christine Renard; Elizabeth Hart; Harminder Sehra; Helen Beasley; Penny Coggill; Kerstin Howe; Jen Harrow; James Gilbert; Sarah Sims; Jane Rogers; Asako Ando; Atsuko Shigenari; Takashi Shiina; Hidetoshi Inoko; Patrick Chardon; Stephan Beck