Helen Hejin Park
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helen Hejin Park.
Applied Physics Letters | 2013
Prasert Sinsermsuksakul; Katy Hartman; Sang Bok Kim; Jaeyeong Heo; Leizhi Sun; Helen Hejin Park; Rupak Chakraborty; Tonio Buonassisi; Roy G. Gordon
SnS is a promising earth-abundant material for photovoltaic applications. Heterojuction solar cells were made by vapor deposition of p-type tin(II) sulfide, SnS, and n-type zinc oxysulfide, Zn(O,S), using a device structure of soda-lime glass/Mo/SnS/Zn(O,S)/ZnO/ITO. A record efficiency was achieved for SnS-based thin-film solar cells by varying the oxygen-to-sulfur ratio in Zn(O,S). Increasing the sulfur content in Zn(O,S) raises the conduction band offset between Zn(O,S) and SnS to an optimum slightly positive value. A record SnS/Zn(O,S) solar cell with a S/Zn ratio of 0.37 exhibits short circuit current density (Jsc), open circuit voltage (Voc), and fill factor (FF) of 19.4 mA/cm2, 0.244 V, and 42.97%, respectively, as well as an NREL-certified total-area power-conversion efficiency of 2.04% and an uncertified active-area efficiency of 2.46%.
Advanced Materials | 2014
Vera Steinmann; R. Jaramillo; Katy Hartman; Rupak Chakraborty; Riley E. Brandt; Jeremy R. Poindexter; Yun Seog Lee; Leizhi Sun; Alexander Polizzotti; Helen Hejin Park; Roy G. Gordon; Tonio Buonassisi
Tin sulfide (SnS), as a promising absorber material in thin-film photovoltaic devices, is described. Here, it is confirmed that SnS evaporates congruently, which provides facile composition control akin to cadmium telluride. A SnS heterojunction solar cell is demons trated, which has a power conversion efficiency of 3.88% (certified), and an empirical loss analysis is presented to guide further performance improvements.
Journal of Materials Chemistry | 2014
Yuhong Oh; Seunghoon Nam; Sungun Wi; Joonhyeon Kang; Taehyun Hwang; Sangheon Lee; Helen Hejin Park; Jordi Cabana; Chunjoong Kim; Byungwoo Park
An effective way of synthesizing graphene-wrapped Li4Ti5O12 particles was developed by solid-state reaction between graphene oxide-wrapped P25 (TiO2) and Li2CO3. Compared to the previously reported graphene/Li4Ti5O12 composites, prior wrapping of TiO2 with subsequent chemical lithiation led to more effectively confined Li4Ti5O12. The Li4Ti5O12 tightly bound by graphene exhibited a remarkable specific capacity of 147 mA h g−1 at a rate of 10 C (1 C = 175 mA g−1) after 100 cycles. This rate capability is one of the highest values among reported Li4Ti5O12 with 150 ± 50 nm grains. The improved rate capability was attributed to the enhanced electronic conductivity of each Li4Ti5O12 grain via uniform graphene wrapping, with single-grain growth during annealing from the initial ∼25 nm TiO2 nanoparticles enclosed by outer graphene sheets. Graphene-eliminated Li4Ti5O12 by thermal decomposition was also directly compared to the graphene-coated sample, to clarify the role of graphene with nearly equivalent particle size/morphology distributions.
Applied Physics Letters | 2013
Leizhi Sun; Richard Haight; Prasert Sinsermsuksakul; Sang Bok Kim; Helen Hejin Park; Roy G. Gordon
Band alignment is critical to the performance of heterojunction thin film solar cells. In this letter, we report band alignment studies of SnS/Zn(O,S) heterojunctions with various compositions of Zn(O,S). Valence band offsets (VBOs) are measured by femtosecond laser pump/probe ultraviolet photoelectron spectroscopy (fs-UPS) from which conduction band offsets (CBOs) are calculated by combining with band gaps obtained by optical transmission/reflection measurements. The SnS/Zn(O,S) heterojunctions with S/Zn ratios of 0.37 and 0.50 have desirable small positive CBOs, while a ratio of 0.64 produces an undesirable large positive CBO. The results are consistent with the device performance of SnS/Zn(O,S) solar cells.
Applied Physics Letters | 2014
Riley E. Brandt; Matthew Young; Helen Hejin Park; Arrelaine Dameron; Danny Chua; Yun Seog Lee; Glenn Teeter; Roy G. Gordon; Tonio Buonassisi
The development of cuprous oxide (Cu2O) photovoltaics (PVs) is limited by low device open-circuit voltages. A strong contributing factor to this underperformance is the conduction-band offset between Cu2O and its n-type heterojunction partner or electron-selective contact. In the present work, a broad range of possible n-type materials is surveyed, including ZnO, ZnS, Zn(O,S), (Mg,Zn)O, TiO2, CdS, and Ga2O3. Band offsets are determined through X-ray photoelectron spectroscopy and optical bandgap measurements. A majority of these materials is identified as having a negative conduction-band offset with respect to Cu2O; the detrimental impact of this on open-circuit voltage (VOC) is evaluated through 1-D device simulation. These results suggest that doping density of the n-type material is important as well, and that a poorly optimized heterojunction can easily mask changes in bulk minority carrier lifetime. Promising heterojunction candidates identified here include Zn(O,S) with [S]/[Zn] ratios >70%, and Ga...
Applied Physics Letters | 2013
Jongmin Kim; Hongsik Choi; Changwoo Nahm; Chohui Kim; Jae Ik Kim; Woojin Lee; Suji Kang; Byungho Lee; Taehyun Hwang; Helen Hejin Park; Byungwoo Park
To suppress the electron-hole recombination in the multishell sensitizer for quantum-dot-sensitized solar cells (QDSCs), the PbxCd1−xS interlayer is incorporated between the PbS core and CdS shell. The PbS/PbxCd1−xS/CdS structure enhances the cell efficiency by ∼60% compared to PbS/CdS QDSCs, and consequently shows a power-conversion efficiency of 1.37% with ZnS coating. Open-circuit voltage decay confirmed that the PbxCd1−xS interlayer effectively reduces the recombination at the PbS/CdS interface. Furthermore, with respect to the peak shift of incident photon-to-current conversion efficiency, the interlayer also increases the light-harvesting efficiency in the higher-wavelength region by reducing the exciton confinement within the PbS sensitizer.
Applied Physics Letters | 2013
Helen Hejin Park; Rachel Lenox Heasley; Roy G. Gordon
Zinc oxysulfide, Zn(O,S), films grown by atomic layer deposition were annealed in oxygen to adjust the carrier concentration. The electron carrier concentration of Zn(O,S) can be reduced by several orders of magnitude from 1019 to 1015 cm−3 by post-deposition annealing in oxygen at temperatures from 200 °C to 290 °C. In the case of Zn(O,S) with S/Zn = 0.37, despite the considerable change in the electron carrier concentration, the bandgap energy decreased by only ∼0.1 eV, and the crystallinity did not change much after annealing. The oxygen/zinc ratio increased by 0.05 after annealing, but the stoichiometry remained uniform throughout the film.
Journal of Applied Physics | 2015
Niall M. Mangan; Riley E. Brandt; Vera Steinmann; R. Jaramillo; Chuanxi Yang; Jeremy R. Poindexter; Rupak Chakraborty; Helen Hejin Park; Xizhu Zhao; Roy G. Gordon; Tonio Buonassisi
An outstanding challenge in the development of novel functional materials for optoelectronic devices is identifying suitable charge-carrier contact layers. Herein, we simulate the photovoltaic device performance of various n-type contact material pairings with tin(II) sulfide (SnS), a p-type absorber. The performance of the contacting material, and resulting device efficiency, depend most strongly on two variables: conduction band offset between absorber and contact layer, and doping concentration within the contact layer. By generating a 2D contour plot of device efficiency as a function of these two variables, we create a performance-space plot for contacting layers on a given absorber material. For a simulated high-lifetime SnS absorber, this 2D performance-space illustrates two maxima, one local and one global. The local maximum occurs over a wide range of contact-layer doping concentrations (below 1016 cm−3), but only a narrow range of conduction band offsets (0 to −0.1 eV), and is highly sensitive t...
Applied Physics Letters | 2014
Helen Hejin Park; Ashwin N Kr Jayaraman; Rachel Lenox Heasley; Chuanxi Yang; Lauren Hartle; Ravin Mankad; Richard Haight; David B. Mitzi; Oki Gunawan; Roy G. Gordon
Zinc oxysulfide, Zn(O,S), films grown by atomic layer deposition were incorporated with aluminum to adjust the carrier concentration. The electron carrier concentration increased up to one order of magnitude from 1019 to 1020 cm−3 with aluminum incorporation and sulfur content in the range of 0 ≤ S/(Zn+Al) ≤ 0.16. However, the carrier concentration decreased by five orders of magnitude from 1019 to 1014 cm−3 for S/(Zn+Al) = 0.34 and decreased even further when S/(Zn+Al) > 0.34. Such tunable electrical properties are potentially useful for graded buffer layers in thin-film photovoltaic applications.
Nanotechnology | 2013
Changwoo Nahm; Hongsik Choi; Jongmin Kim; Sujin Byun; Suji Kang; Taehyun Hwang; Helen Hejin Park; Jaejung Ko; Byungwoo Park
A facile and straightforward method is suggested to synthesize nanoporous-TiO₂ thin films for dye-sensitized solar cells (DSSCs). Silver/TiO₂ co-sputtering led to the formation of nanocomposite films which consisted of silver nanoclusters with surrounding TiO₂ matrices, and metal particles were subsequently etched by just immersing in nitric acid. Nanoporous-TiO₂ DSSCs fabricated by this simple and effective process showed power-conversion efficiencies of up to 3.4% at a thickness of only 1.8 μm, which is much superior to that of conventional nanoparticulate-TiO₂ DSSCs with similar thickness.