Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helen J. Smith is active.

Publication


Featured researches published by Helen J. Smith.


British Journal of Cancer | 2001

Activation of ATP-ubiquitin-dependent proteolysis in skeletal muscle in vivo and murine myoblasts in vitro by a proteolysis-inducing factor (PIF)

M.J. Lorite; Helen J. Smith; J.A. Arnold; A. Morris; M.G. Thompson; Michael J. Tisdale

Loss of skeletal muscle is a major factor in the poor survival of patients with cancer cachexia. This study examines the mechanism of catabolism of skeletal muscle by a tumour product, proteolysis-inducing factor (PIF). Intravenous administration of PIF to normal mice produced a rapid decrease in body weight (1.55 ± 0.12 g in 24 h) that was accompanied by increased mRNA levels for ubiquitin, the Mr 14 000 ubiquitin carrier-protein, E2, and the C9 proteasome subunit in gastrocnemius muscle. There was also increased protein levels of the 20S proteasome core and 19S regulatory subunit, detectable by immunoblotting, suggesting activation of the ATP-ubiquitin-dependent proteolytic pathway. An increased protein catabolism was also seen in C2C12myoblasts within 24 h of PIF addition with a bell-shaped dose–response curve and a maximal effect at 2–4 nM. The enhanced protein degradation was attenuated by anti-PIF antibody and by the proteasome inhibitors MG115 and lactacystin. Glycerol gradient analysis of proteasomes from PIF-treated cells showed an elevation in chymotrypsin-like activity, while Western analysis showed a dose-related increase in expression of MSSI, an ATPase that is a regulatory subunit of the proteasome, with a dose–response curve similar to that for protein degradation. These results confirm that PIF acts directly to stimulate the proteasome pathway in muscle cells and may play a pivotal role in protein catabolism in cancer cachexia.


Cancer Research | 2004

Mechanism of the attenuation of proteolysis-inducing factor stimulated protein degradation in muscle by β-hydroxy-β-methylbutyrate

Helen J. Smith; Stacey M. Wyke; Michael J. Tisdale

The leucine metabolite β-hydroxy-β-methylbutyrate (HMB) prevents muscle protein degradation in cancer-induced weight loss through attenuation of the ubiquitin-proteasome proteolytic pathway. To investigate the mechanism of this effect, the action of HMB on protein breakdown and intracellular signaling leading to increased proteasome expression by the tumor factor proteolysis-inducing factor (PIF) has been studied in vitro using murine myotubes as a surrogate model of skeletal muscle. A comparison has been made of the effects of HMB and those of eicosapentaenoic acid (EPA), a known inhibitor of PIF signaling. At a concentration of 50 μmol/L, EPA and HMB completely attenuated PIF-induced protein degradation and induction of the ubiquitin-proteasome proteolytic pathway, as determined by the “chymotrypsin-like” enzyme activity, as well as protein expression of 20S proteasome α- and β-subunits and subunit p42 of the 19S regulator. The primary event in PIF-induced protein degradation is thought to be release of arachidonic acid from membrane phospholipids, and this process was attenuated by EPA, but not HMB, suggesting that HMB might act at another step in the PIF signaling pathway. EPA and HMB at a concentration of 50 μmol/L attenuated PIF-induced activation of protein kinase C and the subsequent degradation of inhibitor κBα and nuclear accumulation of nuclear factor κB. EPA and HMB also attenuated phosphorylation of p42/44 mitogen-activated protein kinase by PIF, thought to be important in PIF-induced proteasome expression. These results suggest that HMB attenuates PIF-induced activation and increased gene expression of the ubiquitin-proteasome proteolytic pathway, reducing protein degradation.


British Journal of Cancer | 2004

Effect of eicosapentaenoic acid, protein and amino acids on protein synthesis and degradation in skeletal muscle of cachectic mice

Helen J. Smith; Norman Alan Greenberg; Michael J. Tisdale

Atrophy of skeletal muscle reduces both the quality and quantity of life of patients with cancer cachexia. Loss of muscle mass is thought to arise from a reduction in protein synthesis combined with an enhanced rate of protein degradation, and few treatments are available to counteract this process. Eicosapentaenoic acid (EPA) has been shown to attenuate the enhanced protein degradation, but to have no effect on protein synthesis. This study examines the effect of EPA combined with a protein and amino-acid supplementation on protein synthesis and degradation in gastrocnemius muscle of mice bearing the cachexia-inducing MAC16 tumour. Muscles from cachectic mice showed an 80% reduction in protein synthesis and about a 50-fold increase in protein degradation compared with muscles from nontumour-bearing mice of the same age and weight. Treatment with EPA (1 g kg−1) daily reduced protein degradation by 88%, but had no effect on protein synthesis. Combination of EPA with casein (5.35 g kg−1) also had no effect on protein synthesis, but when combined with the amino acids leucine, arginine and methionine there was almost a doubling of protein synthesis. The addition of carbohydrate (10.7 g kg−1) to stimulate insulin release had no additional effect. The combination involving the amino acids produced almost a doubling of the ratio of protein synthesis to protein degradation in gastrocnemius muscle over that of EPA alone. No treatment had a significant effect on tumour growth rate, but the inclusion of amino acids had a more significant effect on weight loss induced by the MAC16 tumour than that of EPA alone. The results suggest that combination therapy of cancer cachexia involving both inhibition of the enhanced protein degradation and stimulation of the reduced protein synthesis may be more effective than either treatment alone.


British Journal of Cancer | 2003

Signal transduction pathways involved in proteolysis-inducing factor induced proteasome expression in murine myotubes

Helen J. Smith; Michael J. Tisdale

The proteolysis-inducing factor (PIF) is produced by cachexia-inducing tumours and initiates protein catabolism in skeletal muscle. The potential signalling pathways linking the release of arachidonic acid (AA) from membrane phospholipids with increased expression of the ubiquitin–proteasome proteolytic pathway by PIF has been studied using C2C12 murine myotubes as a surrogate model of skeletal muscle. The induction of proteasome activity and protein degradation by PIF was blocked by quinacrine, a nonspecific phospholipase A2 (PLA2) inhibitor and trifluroacetyl AA, an inhibitor of cytosolic PLA2. PIF was shown to increase the expression of calcium-independent cytosolic PLA2, determined by Western blotting, at the same concentrations as those inducing maximal expression of 20S proteasome α-subunits and protein degradation. In addition, both U-73122, which inhibits agonist-induced phospholipase C (PLC) activation and D609, a specific inhibitor of phosphatidylcholine-specific PLC also inhibited PIF-induced proteasome activity. This suggests that both PLA2 and PLC are involved in the release of AA in response to PIF, and that this is important in the induction of proteasome expression. The two tyrosine kinase inhibitors genistein and tryphostin A23 also attenuated PIF-induced proteasome expression, implicating tyrosine kinase in this process. PIF induced phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) at the same concentrations as that inducing proteasome expression, and the effect was blocked by PD98059, an inhibitor of MAPK kinase, as was also the induction of proteasome expression, suggesting a role for MAPK activation in PIF-induced proteasome expression.


British Journal of Cancer | 2002

Development of an in-vitro model system to investigate the mechanism of muscle protein catabolism induced by proteolysis-inducing factor

Maria Cristina Cintra Gomes-Marcondes; Helen J. Smith; J.C. Cooper; Michael J. Tisdale

The mechanism of muscle protein catabolism induced by proteolysis-inducing factor, produced by cachexia-inducing murine and human tumours has been studied in vitro using C2C12 myoblasts and myotubes. In both myoblasts and myotubes protein degradation was enhanced by proteolysis-inducing factor after 24 h incubation. In myoblasts this followed a bell-shaped dose-response curve with maximal effects at a proteolysis-inducing factor concentration between 2 and 4 nM, while in myotubes increased protein degradation was seen at all concentrations of proteolysis-inducing factor up to 10 nM, again with a maximum of 4 nM proteolysis-inducing factor. Protein degradation induced by proteolysis-inducing factor was completely attenuated in the presence of cycloheximide (1 μM), suggesting a requirement for new protein synthesis. In both myoblasts and myotubes protein degradation was accompanied by an increased expression of the α-type subunits of the 20S proteasome as well as functional activity of the proteasome, as determined by the ‘chymotrypsin-like’ enzyme activity. There was also an increased expression of the 19S regulatory complex as well as the ubiquitin-conjugating enzyme (E214k), and in myotubes a decrease in myosin expression was seen with increasing concentrations of proteolysis-inducing factor. These results show that proteolysis-inducing factor co-ordinately upregulates both ubiquitin conjugation and proteasome activity in both myoblasts and myotubes and may play an important role in the muscle wasting seen in cancer cachexia.


British Journal of Cancer | 2004

Role of protein kinase C and NF-κB in proteolysis-inducing factor-induced proteasome expression in C2C12 myotubes

Helen J. Smith; Stacey M. Wyke; Michael J. Tisdale

Proteolysis-inducing factor (PIF) is a sulphated glycoprotein produced by cachexia-inducing tumours, which initiates muscle protein degradation through an increased expression of the ubiquitin–proteasome proteolytic pathway. The role of kinase C (PKC) in PIF-induced proteasome expression has been studied in murine myotubes as a surrogate model of skeletal muscle. Proteasome expression induced by PIF was attenuated by 4α-phorbol 12-myristate 13-acetate (100 nM) and by the PKC inhibitors Ro31-8220 (10 μM), staurosporine (300 nM), calphostin C (300 nM) and Gö 6976 (200 μM). Proteolysis-inducing factor-induced activation of PKCα, with translocation from the cytosol to the membrane at the same concentration as that inducing proteasome expression, and this effect was attenuated by calphostin C. Myotubes transfected with a constitutively active PKCα (pCO2) showed increased expression of proteasome activity, and a longer time course, compared with their wild-type counterparts. In contrast, myotubes transfected with a dominant-negative PKCα (pKS1), which showed no activation of PKCα in response to PIF, exhibited no increase in proteasome activity at any time point. Proteolysis-inducing factor-induced proteasome expression has been suggested to involve the transcription factor nuclear factor-κB (NF-κB), which may be activated through PKC. Proteolysis-inducing factor induced a decrease in cytosolic I-κBα and an increase in nuclear binding of NF-κB in pCO2, but not in pKS1, and the effect in wild-type cells was attenuated by calphostin C, confirming that it was mediated through PKC. This suggests that PKC may be involved in the phosphorylation and degradation of I-κBα, induced by PIF, necessary for the release of NF-κB from its inactive cytosolic complex.


Cancer Research | 2001

Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid

Alison S. Whitehouse; Helen J. Smith; Joanne L. Drake; Michael J. Tisdale


Cancer Research | 2005

Attenuation of Proteasome-Induced Proteolysis in Skeletal Muscle by {beta}-Hydroxy-{beta}-Methylbutyrate in Cancer-Induced Muscle Loss

Helen J. Smith; Pradip Mukerji; Michael J. Tisdale


Cancer Research | 1999

Effect of a Cancer Cachectic Factor on Protein Synthesis/Degradation in Murine C2C12 Myoblasts: Modulation by Eicosapentaenoic Acid

Helen J. Smith; Maria J. Lorite; Michael J. Tisdale


Biochemical and Biophysical Research Communications | 2005

Downregulation of ubiquitin-dependent protein degradation in murine myotubes during hyperthermia by eicosapentaenoic acid

Helen J. Smith; Jwan Khal; Michael J. Tisdale

Collaboration


Dive into the Helen J. Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge