Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helen L. Eley is active.

Publication


Featured researches published by Helen L. Eley.


Journal of Biological Chemistry | 2007

Skeletal Muscle Atrophy, a Link between Depression of Protein Synthesis and Increase in Degradation

Helen L. Eley; Michael J. Tisdale

Both proteolysis-inducing factor (PIF) and angiotensin II have been shown to produce a depression in protein synthesis in murine myotubes concomitant with an increased phosphorylation of eukaryotic initiation factor 2 (eIF2α). Both PIF and angiotensin II were shown to induce autophosphorylation of the RNA-dependent protein kinase (PKR), and an inhibitor of this enzyme completely attenuated the depression in protein synthesis and prevented the induction of eIF2α phosphorylation. The PKR inhibitor also completely attenuated the increase in protein degradation induced by PIF and angiotensin II and prevented the increase in proteasome expression and activity. To confirm these results myotubes were transfected with plasmids that express either wild-type PKR, or a catalytically inactive PKR variant, PKRΔ6. Myotubes expressing PKRΔ6 showed no increase in eIF2α phosphorylation in response to PIF or angiotensin II, no depression in protein synthesis, and no increase in protein degradation or increase in proteasome expression. Induction of the ubiquitin-proteasome pathway by PIF and angiotensin II has been linked to activation of the transcription factor nuclear factor-κB (NF-κB). Inhibition of PKR prevented nuclear migration of NF-κB in response to both PIF and angiotensin II, by preventing degradation of the inhibitor protein I-κB. Phosphorylation of PKR and eIF2α was also significantly increased in the gastrocnemius muscle of weight losing mice bearing the MAC16 tumor, suggesting that a similar process may be operative in cancer cachexia. These results provide a link between the depression of protein synthesis in skeletal muscle and the increase in protein degradation.


Biochemical Journal | 2007

Effect of branched-chain amino acids on muscle atrophy in cancer cachexia

Helen L. Eley; Steven T. Russell; Michael J. Tisdale

In the present study, the BCAAs (branched-chain amino acids) leucine and valine caused a significant suppression in the loss of body weight in mice bearing a cachexia-inducing tumour (MAC16), producing a significant increase in skeletal muscle wet weight, through an increase in protein synthesis and a decrease in degradation. Leucine attenuated the increased phosphorylation of PKR (double-stranded-RNA-dependent protein kinase) and eIF2alpha (eukaryotic initiation factor 2alpha) in skeletal muscle of mice bearing the MAC16 tumour, due to an increased expression of PP1 (protein phosphatase 1). Weight loss in mice bearing the MAC16 tumour was associated with an increased amount of eIF4E bound to its binding protein 4E-BP1 (eIF4E-binding protein 1), and a progressive decrease in the active eIF4G-eIF4E complex due to hypophosphorylation of 4E-BP1. This may be due to a reduction in the phosphorylation of mTOR (mammalian target of rapamycin), which may also be responsible for the decreased phosphorylation of p70(S6k) (70 kDa ribosomal S6 kinase). There was also a 5-fold increase in the phosphorylation of eEF2 (eukaryotic elongation factor 2), which would also decrease protein synthesis through a decrease in translation elongation. Treatment with leucine increased phosphorylation of mTOR and p70(S6k), caused hyperphosphorylation of 4E-BP1, reduced the amount of 4E-BP1 associated with eIF4E and caused an increase in the eIF4G-eIF4E complex, together with a reduction in phosphorylation of eEF2. These changes would be expected to increase protein synthesis, whereas a reduction in the activation of PKR would be expected to attenuate the increased protein degradation.


American Journal of Physiology-endocrinology and Metabolism | 2008

Attenuation of depression of muscle protein synthesis induced by lipopolysaccharide, tumor necrosis factor, and angiotensin II by beta-hydroxy-beta-methylbutyrate

Helen L. Eley; Steven T. Russell; Michael J. Tisdale

beta-Hydroxy-beta-methylbutyrate (HMB; 50 microM) has been shown to attenuate the depression in protein synthesis in murine myotubes in response to lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-alpha) with or without interferon-gamma (IFN-gamma), and angiotensin II (ANG II). The mechanism for the depression of protein synthesis by all three agents was the same and was attributed to activation of double-stranded RNA-dependent protein kinase (PKR) with the subsequent phosphorylation of eukaryotic initiation factor 2 (eIF2) on the alpha-subunit as well as increased phosphorylation of the elongation factor (eEF2). Myotubes expressing a catalytically inactive PKR variant, PKRDelta6, showed no depression of protein synthesis in response to either LPS or TNF-alpha, confirming the importance of PKR in this process. There was no effect of any of the agents on phosphorylation of mammalian target of rapamycin (mTOR) or initiation factor 4E-binding protein (4E-BP1), and thus no change in the amount of eIF4E bound to 4E-BP1 or the concentration of the active eIF4E.eIF4G complex. HMB attenuated phosphorylation of eEF2, possibly by increasing phosphorylation of mTOR, and also attenuated phosphorylation of eIF2alpha by preventing activation of PKR. These results suggest that HMB may be effective in attenuating muscle atrophy in a range of catabolic conditions.


American Journal of Physiology-endocrinology and Metabolism | 2008

Mechanism of attenuation of muscle protein degradation induced by tumor necrosis factor-alpha and angiotensin II by beta-hydroxy-beta-methylbutyrate.

Helen L. Eley; Steven T. Russell; Michael J. Tisdale

Both tumor necrosis factor-alpha (TNF-alpha)/interferon-gamma (IFN-gamma) and angiotensin II (ANG II) induced an increase in total protein degradation in murine myotubes, which was completely attenuated by treatment with beta-hydroxy-beta-methylbutyrate (HMB; 50 microM). There was an increase in formation of reactive oxygen species (ROS) within 30 min, as well as an increase in the activity of both caspase-3 and -8, and both effects were attenuated by HMB. Moreover, inhibitors of caspase-3 and -8 completely attenuated both ROS formation and total protein degradation induced by TNF-alpha/IFN-gamma and ANG II. There was an increased autophosphorylation of double-stranded RNA-dependent protein kinase (PKR), which was attenuated by the specific caspase-3 and -8 inhibitors. Neither ROS formation or protein degradation occurred in myotubes expressing a catalytically inactive PKR variant, PKRDelta6, in response to TNF-alpha/IFN-gamma, compared with myotubes expressing wild-type PKR, although there was still activation of caspase-3 and -8. HMB also attenuated activation of PKR, suggesting that it was important in protein degradation. Formation of ROS was attenuated by rotenone, an inhibitor of the mitochondrial electron transport chain, nitro-l-arginine methyl ester, an inhibitor of nitric oxide synthase, and SB 203580, a specific inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), which also attenuated total protein degradation. Activation of p38 MAPK by PKR provides the link to ROS formation. These results suggest that TNF-alpha/IFN-gamma and ANG II induce muscle protein degradation by a common signaling pathway, which is attenuated by HMB, and that this involves the initial activation of caspase-3 and -8, followed by autophosphorylation and activation of PKR, which then leads to increased ROS formation via activation of p38 MAPK. Increased ROS formation is known to induce protein degradation through the ubiquitin-proteasome pathway.


British Journal of Cancer | 2008

Increased expression of phosphorylated forms of RNA-dependent protein kinase and eukaryotic initiation factor 2α may signal skeletal muscle atrophy in weight-losing cancer patients

Helen L. Eley; Richard J.E. Skipworth; D A C Deans; Kenneth Fearon; Michael J. Tisdale

Previous studies suggest that the activation (autophosphorylation) of dsRNA-dependent protein kinase (PKR) can stimulate protein degradation, and depress protein synthesis in skeletal muscle through phosphorylation of the translation initiation factor 2 (eIF2) on the α-subunit. To understand whether these mediators are important in muscle wasting in cancer patients, levels of the phospho forms of PKR and eIF2α have been determined in rectus abdominus muscle of weight losing patients with oesophago-gastric cancer, in comparison with healthy controls. Levels of both phospho PKR and phospho eIF2α were significantly enhanced in muscle of cancer patients with weight loss irrespective of the amount and there was a linear relationship between phosphorylation of PKR and phosphorylation of eIF2α (correlation coefficient 0.76, P=0.005). This suggests that phosphorylation of PKR led to phosphorylation of eIF2α. Myosin levels decreased as the weight loss increased, and there was a linear relationship between myosin expression and the extent of phosphorylation of eIF2α (correlation coefficient 0.77, P=0.004). These results suggest that phosphorylation of PKR may be an important initiator of muscle wasting in cancer patients.


British Journal of Cancer | 2007

Attenuation of muscle atrophy in a murine model of cachexia by inhibition of the dsRNA-dependent protein kinase

Helen L. Eley; Steve T. Russell; Michael J. Tisdale

Atrophy of skeletal muscle is due to a depression in protein synthesis and an increase in degradation. Studies in vitro have suggested that activation of the dsRNA-dependent protein kinase (PKR) may be responsible for these changes in protein synthesis and degradation. In order to evaluate whether this is also applicable to cancer cachexia the action of a PKR inhibitor on the development of cachexia has been studied in mice bearing the MAC16 tumour. Treatment of animals with the PKR inhibitor (5 mg kg−1) significantly reduced levels of phospho-PKR in muscle down to that found in non-tumour-bearing mice, and effectively attenuated the depression of body weight, with increased muscle mass, and also inhibited tumour growth. There was an increase in protein synthesis in skeletal muscle, which paralleled a decrease in eukaryotic initiation factor 2α phosphorylation. Protein degradation rates in skeletal muscle were also significantly decreased, as was proteasome activity levels and expression. Myosin levels were increased up to values found in non-tumour-bearing animals. Proteasome expression correlated with a decreased nuclear accumulation of nuclear factor-κB (NF-κB). The PKR inhibitor also significantly inhibited tumour growth, although this appeared to be a separate event from the effect on muscle wasting. These results suggest that inhibition of the autophosphorylation of PKR may represent an appropriate target for the attenuation of muscle atrophy in cancer cachexia.


Biochemical Journal | 2008

Involvement of phosphoinositide 3-kinase and Akt in the induction of muscle protein degradation by proteolysis-inducing factor.

Steven T. Russell; Helen L. Eley; Stacey M. Wyke; Michael J. Tisdale

In the present study the role of Akt/PKB (protein kinase B) in PIF- (proteolysis-inducing factor) induced protein degradation has been investigated in murine myotubes. PIF induced transient phosphorylation of Akt at Ser(473) within 30 min, which was attenuated by the PI3K (phosphoinositide 3-kinase) inhibitor LY294002 and the tyrosine kinase inhibitor genistein. Protein degradation was attenuated in myotubes expressing a dominant-negative mutant of Akt (termed DNAkt), compared with the wild-type variant, whereas it was enhanced in myotubes containing a constitutively active Akt construct (termed MyrAkt). A similar effect was observed on the induction of the ubiquitin-proteasome pathway. Phosphorylation of Akt has been linked to up-regulation of the ubiquitin-proteasome pathway through activation of NF-kappaB (nuclear factor kappaB) in a PI3K-dependent process. Protein degradation was attenuated by rapamycin, a specific inhibitor of mTOR (mammalian target of rapamycin), when added before, or up to 30 min after, addition of PIF. PIF induced transient phosphorylation of mTOR and the 70 kDa ribosomal protein S6 kinase. These results suggest that transient activation of Akt results in an increased protein degradation through activation of NF-kappaB and that this also allows for a specific synthesis of proteasome subunits.


American Journal of Physiology-endocrinology and Metabolism | 2007

Signaling pathways initiated by beta-hydroxy-beta-methylbutyrate to attenuate the depression of protein synthesis in skeletal muscle in response to cachectic stimuli.

Helen L. Eley; Steven T. Russell; Jeffrey Harris Baxter; Pradip Mukerji; Michael J. Tisdale


Cellular Signalling | 2007

Role of reactive oxygen species in protein degradation in murine myotubes induced by proteolysis-inducing factor and angiotensin II.

Steve T. Russell; Helen L. Eley; Michael J. Tisdale


Cellular Signalling | 2007

Mechanism of attenuation of angiotensin-II-induced protein degradation by insulin-like growth factor-I (IGF-I)

Steven T. Russell; Helen L. Eley; Michael J. Tisdale

Collaboration


Dive into the Helen L. Eley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D A C Deans

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge