Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steve T. Russell is active.

Publication


Featured researches published by Steve T. Russell.


British Journal of Cancer | 2004

Induction of proteasome expression in skeletal muscle is attenuated by inhibitors of NF-κB activation

Stacey M. Wyke; Steve T. Russell; Michael J. Tisdale

The potential for inhibitors of nuclear factor-κB (NF-κB) activation to act as inhibitors of muscle protein degradation in cancer cachexia has been evaluated both in vitro and in vivo. Activation of NF-κB is important in the induction of proteasome expression and protein degradation by the tumour factor, proteolysis-inducing factor (PIF), since the cell permeable NF-κB inhibitor SN50 (18 μM) attenuated the expression of 20S proteasome α-subunits, two subunits of the 19S regulator MSS1 and p42, and the ubiquitin-conjugating enzyme, E214k, as well as the decrease in myosin expression in murine myotubes. To assess the potential therapeutic benefit of NF-κB inhibitors on muscle atrophy in cancer cachexia, two potential inhibitors were employed; curcumin (50 μM) and resveratrol (30 μM). Both agents completely attenuated total protein degradation in murine myotubes at all concentrations of PIF, and attenuated the PIF-induced increase in expression of the ubiquitin–proteasome proteolytic pathway, as determined by the ‘chymotrypsin-like’ enzyme activity, proteasome subunits and E214k. However, curcumin (150 and 300 mg kg−1) was ineffective in preventing weight loss and muscle protein degradation in mice bearing the MAC16 tumour, whereas resveratrol (1 mg kg−1) significantly attenuated weight loss and protein degradation in skeletal muscle, and produced a significant reduction in NF-κB DNA-binding activity. The inactivity of curcumin was probably due to a low bioavailability. These results suggest that agents which inhibit nuclear translocation of NF-κB may prove useful for the treatment of muscle wasting in cancer cachexia.


British Journal of Cancer | 2002

Role of β3-adrenergic receptors in the action of a tumour lipid mobilizing factor

Steve T. Russell; Kouzo Hirai; Michael J. Tisdale

Induction of lipolysis in murine white adipocytes, and stimulation of adenylate cyclase in adipocyte plasma membranes, by a tumour-produced lipid mobilizing factor, was attenuated by low concentrations (10−7–10−5 M) of the specific β3-adrenoceptor antagonist SR59230A. Lipid mobilizing factor (250 nM) produced comparable increases in intracellular cyclic AMP in CHOK1 cells transfected with the human β3-adrenoceptor to that obtained with isoprenaline (1 nM). In both cases cyclic AMP production was attenuated by SR59230A confirming that the effect is mediated through a β3-adrenoceptor. A non-linear regression analysis of binding of lipid mobilizing factor to the β3-adrenoceptor showed a high affinity binding site with a Kd value 78±45 nM and a Bmax value (282±1 fmole mg protein−1) comparable with that of other β3-adrenoceptor agonists. These results suggest that lipid mobilizing factor induces lipolysis through binding to a β3-adrenoceptor.


British Journal of Cancer | 2006

Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice

Chen Bing; Steve T. Russell; E. Becket; M. Pope; Michael J. Tisdale; Paul Trayhurn; John R. Jenkins

Extensive loss of adipose tissue is a hallmark of cancer cachexia but the cellular and molecular basis remains unclear. This study has examined morphologic and molecular characteristics of white adipose tissue in mice bearing a cachexia-inducing tumour, MAC16. Adipose tissue from tumour-bearing mice contained shrunken adipocytes that were heterogeneous in size. Increased fibrosis was evident by strong collagen-fibril staining in the tissue matrix. Ultrastructure of ‘slimmed’ adipocytes revealed severe delipidation and modifications in cell membrane conformation. There were major reductions in mRNA levels of adipogenic transcription factors including CCAAT/enhancer binding protein alpha (C/EBPα), CCAAT/enhancer binding protein beta, peroxisome proliferator-activated receptor gamma, and sterol regulatory element binding protein-1c (SREBP-1c) in adipose tissue, which was accompanied by reduced protein content of C/EBPα and SREBP-1. mRNA levels of SREBP-1c targets, fatty acid synthase, acetyl CoA carboxylase, stearoyl CoA desaturase 1 and glycerol-3-phosphate acyl transferase, also fell as did glucose transporter-4 and leptin. In contrast, mRNA levels of peroxisome proliferators-activated receptor gamma coactivator-1alpha and uncoupling protein-2 were increased in white fat of tumour-bearing mice. These results suggest that the tumour-induced impairment in the formation and lipid storing capacity of adipose tissue occurs in mice with cancer cachexia.


British Journal of Cancer | 2005

The role of glucocorticoids in the induction of zinc-α2-glycoprotein expression in adipose tissue in cancer cachexia

Steve T. Russell; Michael J. Tisdale

Loss of adipose tissue in cancer cachexia in mice bearing the MAC16 tumour arises from an increased lipid mobilisation through increased expression of zinc-α2-glycoprotein (ZAG) in white (WAT) and brown (BAT) adipose tissue. Glucocorticoids have been suggested to increase ZAG expression, and this study examines their role in cachexia and the mechanisms involved. In mice bearing the MAC16 tumour, serum cortisol concentrations increased in parallel with weight loss, and the glucocorticoid receptor antagonist RU38486 (25 mg kg−1) attenuated both the loss of body weight and ZAG expression in WAT. Dexamethasone (66 μg kg−1) administration to normal mice produced a six-fold increase in ZAG expression in both WAT and BAT, which was also attenuated by RU38486. In vitro studies using 3T3-L1 adipocytes showed dexamethasone (1.68 μM) to stimulate lipolysis and increase ZAG expression, and both were attenuated by RU38486 (10 μM), anti-ZAG antibody (1 μgml−1), and the β3-adrenoreceptor (β3-AR) antagonist SR59230A (10 μM). Zinc-α2-glycoprotein also increased its own expression and this was attenuated by SR59230A, suggesting that it was mediated through the β3-AR. This suggests that glucocorticoids stimulate lipolysis through an increase in ZAG expression, and that they are responsible for the increase in ZAG expression seen in adipose tissue of cachectic mice.


British Journal of Cancer | 2005

Expression of the ubiquitin-proteasome pathway and muscle loss in experimental cancer cachexia

Jwan Khal; Stacey M. Wyke; Steve T. Russell; Anna V. Hine; Michael J. Tisdale

Muscle protein degradation is thought to play a major role in muscle atrophy in cancer cachexia. To investigate the importance of the ubiquitin-proteasome pathway, which has been suggested to be the main degradative pathway mediating progressive protein loss in cachexia, the expression of mRNA for proteasome subunits C2 and C5 as well as the ubiquitin-conjugating enzyme, E214k, has been determined in gastrocnemius and pectoral muscles of mice bearing the MAC16 adenocarcinoma, using competitive quantitative reverse transcriptase polymerase chain reaction. Protein levels of proteasome subunits and E214k were determined by immunoblotting, to ensure changes in mRNA were reflected in changes in protein expression. Muscle weights correlated linearly with weight loss during the course of the study. There was a good correlation between expression of C2 and E214k mRNA and protein levels in gastrocnemius muscle with increases of 6–8-fold for C2 and two-fold for E214k between 12 and 20% weight loss, followed by a decrease in expression at weight losses of 25–27%, although loss of muscle protein continued. In contrast, expression of C5 mRNA only increased two-fold and was elevated similarly at all weight losses between 7.5 and 27%. Both proteasome functional activity, and proteasome-specific tyrosine release as a measure of total protein degradation was also maximal at 18–20% weight loss and decreased at higher weight loss. Proteasome expression in pectoral muscle followed a different pattern with increases in C2 and C5 and E214k mRNA only being seen at weight losses above 17%, although muscle loss increased progressively with increasing weight loss. These results suggest that activation of the ubiquitin-proteasome pathway plays a major role in protein loss in gastrocnemius muscle, up to 20% weight loss, but that other factors such as depression in protein synthesis may play a more important role at higher weight loss.


British Journal of Cancer | 2007

Attenuation of muscle atrophy in a murine model of cachexia by inhibition of the dsRNA-dependent protein kinase

Helen L. Eley; Steve T. Russell; Michael J. Tisdale

Atrophy of skeletal muscle is due to a depression in protein synthesis and an increase in degradation. Studies in vitro have suggested that activation of the dsRNA-dependent protein kinase (PKR) may be responsible for these changes in protein synthesis and degradation. In order to evaluate whether this is also applicable to cancer cachexia the action of a PKR inhibitor on the development of cachexia has been studied in mice bearing the MAC16 tumour. Treatment of animals with the PKR inhibitor (5 mg kg−1) significantly reduced levels of phospho-PKR in muscle down to that found in non-tumour-bearing mice, and effectively attenuated the depression of body weight, with increased muscle mass, and also inhibited tumour growth. There was an increase in protein synthesis in skeletal muscle, which paralleled a decrease in eukaryotic initiation factor 2α phosphorylation. Protein degradation rates in skeletal muscle were also significantly decreased, as was proteasome activity levels and expression. Myosin levels were increased up to values found in non-tumour-bearing animals. Proteasome expression correlated with a decreased nuclear accumulation of nuclear factor-κB (NF-κB). The PKR inhibitor also significantly inhibited tumour growth, although this appeared to be a separate event from the effect on muscle wasting. These results suggest that inhibition of the autophosphorylation of PKR may represent an appropriate target for the attenuation of muscle atrophy in cancer cachexia.


Cancer Chemotherapy and Pharmacology | 2009

Attenuation of skeletal muscle atrophy in cancer cachexia by d-myo-inositol 1,2,6-triphosphate

Steve T. Russell; Pontus M. A. Siren; Matti J. Siren; Michael J. Tisdale

PurposeTo determine the effectiveness of the polyanionic, metal binding agent d-myo-inositol-1,2,6-triphosphate (alpha trinositol, AT), and its hexanoyl ester (HAT), in tissue wasting in cancer cachexia.MethodsThe anti-cachexic effect was evaluated in the MAC16 tumour model.ResultsBoth AT and HAT attenuated the loss of body weight through an increase in the nonfat carcass mass due to an increase in protein synthesis and a decrease in protein degradation in skeletal muscle. The decrease in protein degradation was associated with a decrease in activity of the ubiquitin-proteasome proteolytic pathway and caspase-3 and -8. Protein synthesis was increased due to attenuation of the elevated autophosphorylation of double-stranded RNA-dependent protein kinase, and of eukaryotic initiation factor 2α together with hyperphosphorylation of eIF4E-binding protein 1 and decreased phosphorylation of eukaryotic elongation factor 2. In vitro, AT completely attenuated the protein degradation in murine myotubes induced by both proteolysis-inducing factor and angiotensin II.ConclusionThese results show that AT is a novel therapeutic agent with the potential to alleviate muscle wasting in cancer patients.


Cellular Signalling | 2007

Role of reactive oxygen species in protein degradation in murine myotubes induced by proteolysis-inducing factor and angiotensin II.

Steve T. Russell; Helen L. Eley; Michael J. Tisdale


Cellular Signalling | 2010

Mechanism of activation of dsRNA-dependent protein kinase (PKR) in muscle atrophy

Helen L. Eley; Steve T. Russell; Michael J. Tisdale


Molecular and Cellular Biochemistry | 2008

Role of the dsRNA-dependent protein kinase (PKR) in the attenuation of protein loss from muscle by insulin and insulin-like growth factor-I (IGF-I)

Helen L. Eley; Steve T. Russell; Michael J. Tisdale

Collaboration


Dive into the Steve T. Russell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Bing

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matti J. Siren

Association of Research Libraries

View shared research outputs
Top Co-Authors

Avatar

Pontus M. A. Siren

Association of Research Libraries

View shared research outputs
Researchain Logo
Decentralizing Knowledge