Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helen M. Coley is active.

Publication


Featured researches published by Helen M. Coley.


Cancer Control | 2003

Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein.

Hilary Thomas; Helen M. Coley

BACKGROUND Multidrug resistance (MDR) is a significant obstacle to providing effective chemotherapy to many patients. Multifactorial in etiology, classic MDR is associated with the overexpression of P-glycoprotein (P-gp), resulting in increased efflux of chemotherapy from cancer cells. Inhibiting P-gp as a method to reverse MDR in cancer patients has been studied extensively, but the results have generally been disappointing. METHODS The development of P-gp inhibitors is reviewed, including a discussion of early agents that are no longer being developed and third-generation agents that are currently in clinical trials. RESULTS First-generation agents (eg, cyclosporin, verapamil) were limited by unacceptable toxicity, whereas second-generation agents (eg, valspodar, biricodar) had better tolerability but were confounded by unpredictable pharmacokinetic interactions and interactions with other transporter proteins. Third-generation inhibitors (tariquidar XR9576, zosuquidar LY335979, laniquidar R101933, and ONT-093) have high potency and specificity for P-gp. Furthermore, pharmacokinetic studies to date have shown no appreciable impact on cytochrome P450 3A4 drug metabolism and no clinically significant drug interactions with common chemotherapy agents. CONCLUSIONS Third-generation P-gp inhibitors have shown promise in clinical trials. The continued development of these agents may establish the true therapeutic potential of P-gp-mediated MDR reversal.


Cancer Treatment Reviews | 2008

Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer

Helen M. Coley

Resistance to chemotherapeutic agents is a significant issue in the management of patients with breast cancer. Anthracyclines, although first used over 30 years ago, are still part of the standard chemotherapy for this disease. Subsequently, the taxanes heralded a new era in chemotherapy and have been used extensively in the treatment of metastatic breast cancer. Unfortunately, along with other constituents of combination chemotherapy for metastatic breast cancer such as cyclophosphamide, these agents become increasingly ineffective in progressive disease and tumours are then deemed to be drug resistant - frequently multidrug resistant. A number of processes have been identified that can underlie clinical drug resistance, and these largely stem from in vitro laboratory-based studies in human cancer cell lines. A large proportion of these studies have focused on multidrug resistance associated with resistance to natural product anticancer agents due to the presence of putative drug transporter proteins such as P-glycoprotein, MRP1, and BCRP. Other studies have highlighted mechanisms whereby breast cancer cells show resistance to chemotherapeutic agents by altered regulation of DNA repair processes, with many other factors influencing drug detoxification processes and altering drug targets. New developmental agents with improved specificity for tumour cells, such as trastuzumab, and those with low susceptibility to common tumour-resistance mechanisms, such as ixabepilone, have provided new hope for effective treatment of breast cancer. Ixabepilone is the first in a new class of neoplastics, the epothilones. With these developments in therapy, and the technology of gene expression profiling, the future holds more promise for the development of more effective treatment for metastatic breast cancer.


ACS Nano | 2010

Higher Dispersion Efficacy of Functionalized Carbon Nanotubes in Chemical and Biological Environments

Elena Heister; Constanze Lamprecht; Vera Neves; Carmen Tîlmaciu; Lucien Datas; Emmanuel Flahaut; Brigitte Soula; Peter Hinterdorfer; Helen M. Coley; S. Ravi P. Silva; Johnjoe McFadden

Aqueous dispersions of functionalized carbon nanotubes (CNTs) are now widely used for biomedical applications. Their stability in different in vitro or in vivo environments, however, depends on a wide range of parameters, such as pH and salt concentrations of the surrounding medium, and length, aspect ratio, surface charge, and functionalization of the applied CNTs. Although many of these aspects have been investigated separately, no study is available in the literature to date, which examines these parameters simultaneously. Therefore, we have chosen five types of carbon nanotubes, varying in their dimensions and surface properties, for a multidimensional analysis of dispersion stability in salt solutions of differing pH and concentrations. Furthermore, we examine the dispersion stability of oxidized CNTs in biological fluids, such as cellular growth media and human plasma, and their toxicity toward cancer cells. To enhance dispersibility and biocompatibility, the influence of different functionalization schemes is studied. The results of our investigations indicate that both CNT dimensions and surface functionalization have a significant influence on their dispersion and in vitro behavior. In particular, factors such as a short aspect ratio, presence of oxidation debris and serum proteins, low salt concentration, and an appropriate pH are shown to improve the dispersion stability. Furthermore, covalent surface functionalization with amine-terminated polyethylene glycol (PEG) is demonstrated to stabilize CNT dispersions in various media and to reduce deleterious effects on cultured cells. These findings provide crucial data for the development of biofunctionalization protocols, for example, for future cancer theranostics, and optimizing the stability of functionalized CNTs in varied biological environments.


Seminars in Cancer Biology | 2015

Broad targeting of resistance to apoptosis in cancer

Ramzi M. Mohammad; Irfana Muqbil; Leroy Lowe; Clement Yedjou; Hsue Yin Hsu; Liang Tzung Lin; Markus D. Siegelin; Carmela Fimognari; Nagi B. Kumar; Q. Ping Dou; Huanjie Yang; Abbas K. Samadi; Gian Luigi Russo; Carmela Spagnuolo; Swapan K. Ray; Mrinmay Chakrabarti; James D. Morre; Helen M. Coley; Kanya Honoki; Hiromasa Fujii; Alexandros G. Georgakilas; Amedeo Amedei; Elena Niccolai; Amr Amin; S. Salman Ashraf; William G. Helferich; Xujuan Yang; Chandra S. Boosani; Gunjan Guha; Dipita Bhakta

Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.


Methods of Molecular Biology | 2010

Overcoming Multidrug Resistance in Cancer: Clinical Studies of P-Glycoprotein Inhibitors

Helen M. Coley

Chemotherapy remains the mainstay in the treatment and management of many cancers. However, this treatment modality is fraught with difficulties associated with toxicity and also the emergence of chemotherapy resistance is a considerable problem. Cancer scientists and oncologists have worked together for some time to find ways of understanding anticancer drug resistance and also to develop pharmacological strategies to overcome that resistance. The greatest focus has been on the reversal of the multidrug resistance (MDR) phenotype by inhibition of the ATP-binding cassette (ABC) drug transporters. Inhibitors of ABC transporters--termed MDR modulators--have in the past been numerous and have occupied industry and academia in drug discovery programs. The field has been fraught with difficulties and disappointments but, nonetheless, we are currently considering the fourth generation of MDR modulator development with much data pending from the clinical trials with the third-generation modulators. First-generation MDR modulator compounds were very diverse and broad spectrum pharmacological agents which fuelled the excitement surrounding the research into the MDR phenotype in cancer at the time. Second-generation agents were very heavily evaluated in mechanistic studies and formed the basis for a number of oncology portfolios of big pharmaceutical companies. Given this input, a number of clinical trials were carried out, the results of which were somewhat disappointing. Even with the modest evidence of active combinations, trial data were considered promising enough to warrant development of the third-generation of modulators. A number of key molecules have been identified with potent, long lasting MDR reversal properties, and minimal pharmacokinetic interaction with the co-administered cytotoxic agent. The results from a number of these trials are eagerly awaited and there are many in the cancer research community who remain committed to this area of anticancer drug discovery.


Biophysical Journal | 2003

Assessment of Multidrug Resistance Reversal Using Dielectrophoresis and Flow Cytometry

Fatima H. Labeed; Helen M. Coley; Hilary Thomas; Michael P. Hughes

In cancer, multidrug resistance (MDR) is the simultaneous resistance of tumor cells to different natural product anticancer drugs that have no common structure. This is an impediment to the successful treatment of many human cancers. A common correlate of MDR is the overexpression of a membrane protein, P-glycoprotein. Many studies have shown that MDR can be reversed after the use of substrate analogs, called MDR modulators. However, our understanding of MDR modulation is incomplete. In this article, we examine the electrical properties of the human leukemic cells (K562) and its MDR counterpart (K562AR) using dielectrophoresis and flow cytometry (with a membrane potential sensitive dye, DIOC5), both before and after treatment with XR9576 (a P-glycoprotein-specific MDR-reversal agent). The results show significant differences in the cytoplasmic conductivity between the cell lines themselves, but indicate no significant changes after modulation therapy. We conclude that the process of MDR modulation is not associated with changes in the electrical properties of cancer cells. Moreover, the results demonstrate that using the flow cytometry method alone, with MDR cells, may produce artifactual results--whereas in combination with dielectrophoresis, the results show the role of MDR modulators in preventing drug efflux in MDR cells.


Cell Death and Disease | 2013

Epigenetic status of argininosuccinate synthetase and argininosuccinate lyase modulates autophagy and cell death in glioblastoma.

Nelofer Syed; Julia Langer; K. Janczar; P Singh; C Lo Nigro; Laura Lattanzio; Helen M. Coley; Eleftheria Hatzimichael; John S. Bomalaski; Peter W. Szlosarek; M Awad; K O'Neil; F. Roncaroli; Tim Crook

Arginine deprivation, either by nutritional starvation or exposure to ADI-PEG20, induces adaptive transcriptional upregulation of ASS1 and ASL in glioblastoma multiforme ex vivo cultures and cell lines. This adaptive transcriptional upregulation is blocked by neoplasia-specific CpG island methylation in either gene, causing arginine auxotrophy and cell death. In cells with methylated ASS1 or ASL CpG islands, ADI-PEG20 initially induces a protective autophagic response, but abrogation of this by chloroquine accelerates and potentiates cytotoxicity. Concomitant methylation in the CpG islands of both ASS1 and ASL, observed in a subset of cases, confers hypersensitivity to ADI-PEG20. Cancer stem cells positive for CD133 and methylation in the ASL CpG island retain sensitivity to ADI-PEG20. Our results show for the first time that epigenetic changes occur in both of the two key genes of arginine biosynthesis in human cancer and confer sensitivity to therapeutic arginine deprivation. We demonstrate that methylation status of the CpG islands, rather than expression levels per se of the genes, predicts sensitivity to arginine deprivation. Our results suggest a novel therapeutic strategy for this invariably fatal central nervous system neoplasm for which we have identified robust biomarkers and which overcomes the limitations to conventional chemotherapy imposed by the blood/brain barrier.


European Journal of Haematology | 2010

The prolyl-hydroxylase EGLN3 and not EGLN1 is inactivated by methylation in plasma cell neoplasia

Eleftheria Hatzimichael; Aggeliki Dasoula; Reshma Shah; Nelofer Syed; Alexandra Papoudou-Bai; Helen M. Coley; George Dranitsaris; Konstantinos L. Bourantas; Justin Stebbing; Tim Crook

EGLN1 and EGLN3 are members of the egg‐laying‐defective 9 (EglN) prolyl‐hydroxylases which during normoxia catalyse hydroxylation of the hypoxia‐inducible factor (HIF)‐1α, thereby promoting its ubiquitination by a complex containing the von Hippel–Lindau (VHL) tumour suppressor. EGLN3 also has pro‐apoptotic activity in some cell types. Analyses of a well‐characterised series of cases of plasma cell dyscrasias, including multiple myeloma (MM), Waldenström’s macroglobulinaemia (WM) and monoclonal gammopathy of undetermined significance (MGUS) surprisingly demonstrated that the CpG island of EGLN3, and not EGLN1, is frequently methylated in these disorders. Multiple myeloma patients with a methylated EGLN3 promoter showed trends towards an increased risk of death, bone lytic lesions, anaemia, advanced stage of disease and the presence of extramedullary disease. Those individuals with methylation in the EGLN3 CpG island also had significantly lower albumin levels. These data suggest that the prolyl‐hydroxylases may be a novel class of potential tumour suppressors in plasma cell neoplasia that warrant further investigation with regard to their potential utility as biomarkers. Moreover, we observed that EGLN3 is also methylated at high frequency in B‐cell lymphoma subtypes, implying that loss of EGLN3 is an important epigenetic event not only in plasma cell neoplasias but also in B‐cell neoplasias.


Cancer Research | 2011

Polo-like Kinase Plk2 Is an Epigenetic Determinant of Chemosensitivity and Clinical Outcomes in Ovarian Cancer

Nelofer Syed; Helen M. Coley; Jalid Sehouli; Dominique Koensgen; Alexander Mustea; Peter W. Szlosarek; Iain A. McNeish; Sarah Blagden; Peter Schmid; Eleftheria Hatzimichael; Tim Crook

Resistance to platinum- and taxane-based chemotherapy remains a major clinical impediment to effective management of epithelial ovarian cancer (EOC). To gain insights into resistance mechanisms, we compared gene and confirmed expression patterns of novel EOC cell lines selected for paclitaxel and carboplatin resistance. Here, we report that resistance can be conferred by downregulation of the Polo-like kinase Plk2. Mechanistic investigations revealed that downregulation occurred at the level of transcription via associated DNA methylation of the CpG island in the Plk2 gene promoter in cell lines, primary tumors, and patient sera. Inhibitory RNA (RNAi)-mediated knockdown and ectopic overexpression established a critical functional role for Plk2 in determining apoptotic sensitivity to paclitaxel and carboplatin. In drug-resistant human EOC cell lines, Plk2 promoter methylation varied with the degree of drug resistance and transcriptional silencing of the promoter. RNAi-dependent knockdown of Plk2 abrogated G(2)-M cell-cycle blockade by paclitaxel, conferring resistance to both paclitaxel and platinum. Conversely, ectopic expression of Plk2 restored sensitivity to G(2)-M cell-cycle blockade and cytotoxicity triggered by paclitaxel. In clinical cases, DNA methylation of the Plk2 CpG island in tumor tissue was associated with a higher risk of relapse in patients treated postoperatively with carboplatin and paclitaxel (P = 0.003). This trend was also reflected in the analysis of matched serum samples. Taken together, our results implicate Plk2 as a clinically important determinant of chemosensitivity, in support of the candidacy of Plk2 as a theranostic marker to inform EOC management.


Nanotechnology | 2009

AFM imaging of functionalized carbon nanotubes on biological membranes

Constanze Lamprecht; Ivan Liashkovich; Vera Neves; Jürgen Danzberger; Elena Heister; Martina Rangl; Helen M. Coley; Johnjoe McFadden; Emmanuel Flahaut; Hermann J. Gruber; Peter Hinterdorfer; Ferry Kienberger; Andreas Ebner

Multifunctional carbon nanotubes are promising for biomedical applications as their nano-size, together with their physical stability, gives access into the cell and various cellular compartments including the nucleus. However, the direct and label-free detection of carbon nanotube uptake into cells is a challenging task. The atomic force microscope (AFM) is capable of resolving details of cellular surfaces at the nanometer scale and thus allows following of the docking of carbon nanotubes to biological membranes. Here we present topographical AFM images of non-covalently functionalized single walled (SWNT) and double walled carbon nanotubes (DWNT) immobilized on different biological membranes, such as plasma membranes and nuclear envelopes, as well as on a monolayer of avidin molecules. We were able to visualize DWNT on the nuclear membrane while at the same time resolving individual nuclear pore complexes. Furthermore, we succeeded in localizing individual SWNT at the border of incubated cells and in identifying bundles of DWNT on cell surfaces by AFM imaging.

Collaboration


Dive into the Helen M. Coley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Judson

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hilary Thomas

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

Michael Jarman

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Nelofer Syed

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge