Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helen Marie Amos is active.

Publication


Featured researches published by Helen Marie Amos.


Environmental Science & Technology | 2014

Global Biogeochemical Implications of Mercury Discharges from Rivers and Sediment Burial

Helen Marie Amos; Daniel J. Jacob; David Kocman; Hannah M. Horowitz; Yanxu Zhang; Stephanie Dutkiewicz; Milena Horvat; Elizabeth S. Corbitt; David P. Krabbenhoft; Elynor M Sunderland

Rivers are an important source of mercury (Hg) to marine ecosystems. Based on an analysis of compiled observations, we estimate global present-day Hg discharges from rivers to ocean margins are 27 ± 13 Mmol a(-1) (5500 ± 2700 Mg a(-1)), of which 28% reaches the open ocean and the rest is deposited to ocean margin sediments. Globally, the source of Hg to the open ocean from rivers amounts to 30% of atmospheric inputs. This is larger than previously estimated due to accounting for elevated concentrations in Asian rivers and variability in offshore transport across different types of estuaries. Riverine inputs of Hg to the North Atlantic have decreased several-fold since the 1970s while inputs to the North Pacific have increased. These trends have large effects on Hg concentrations at ocean margins but are too small in the open ocean to explain observed declines of seawater concentrations in the North Atlantic or increases in the North Pacific. Burial of Hg in ocean margin sediments represents a major sink in the global Hg biogeochemical cycle that has not been previously considered. We find that including this sink in a fully coupled global biogeochemical box model helps to balance the large anthropogenic release of Hg from commercial products recently added to global inventories. It also implies that legacy anthropogenic Hg can be removed from active environmental cycling on a faster time scale (centuries instead of millennia). Natural environmental Hg levels are lower than previously estimated, implying a relatively larger impact from human activity.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions

Yanxu Zhang; Daniel J. Jacob; Hannah M. Horowitz; Long Chen; Helen Marie Amos; David P. Krabbenhoft; F. Slemr; Vincent L. St. Louis; Elynor M Sunderland

Significance Anthropogenic mercury poses risks to humans and ecosystems when converted to methylmercury. A longstanding conundrum has been the apparent disconnect between increasing global emissions trends and measured declines in atmospheric mercury in North America and Europe. This work shows that locally deposited mercury close to coal-fired utilities has declined more rapidly than previously anticipated because of shifts in speciation from air pollution control technology targeted at SO2 and NOx. Reduced emissions from utilities over the past two decades and the phase-out of mercury in many commercial products has led to lower global anthropogenic emissions and associated deposition to ecosystems. This implies that prior policy assessments underestimated the regional benefits of declines in mercury emissions from coal-fired utilities. Observations of elemental mercury (Hg0) at sites in North America and Europe show large decreases (∼1–2% y−1) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (<1% y−1). These decreases are inconsistent with current global emission inventories indicating flat or increasing emissions over that period. However, the inventories have three major flaws: (i) they do not account for the decline in atmospheric release of Hg from commercial products; (ii) they are biased in their estimate of artisanal and small-scale gold mining emissions; and (iii) they do not properly account for the change in Hg0/HgII speciation of emissions from coal-fired utilities after implementation of emission controls targeted at SO2 and NOx. We construct an improved global emission inventory for the period 1990 to 2010 accounting for the above factors and find a 20% decrease in total Hg emissions and a 30% decrease in anthropogenic Hg0 emissions, with much larger decreases in North America and Europe offsetting the effect of increasing emissions in Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg0 concentrations and in HgII wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities.


Environmental Science & Technology | 2015

Observational and modeling constraints on global anthropogenic enrichment of mercury.

Helen Marie Amos; Jeroen E. Sonke; Daniel Obrist; Nicholas A. Robins; Nicole Hagan; Hannah M. Horowitz; Robert P. Mason; M.L.I. Witt; Ian M. Hedgecock; Elizabeth S. Corbitt; Elsie M. Sunderland

Centuries of anthropogenic releases have resulted in a global legacy of mercury (Hg) contamination. Here we use a global model to quantify the impact of uncertainty in Hg atmospheric emissions and cycling on anthropogenic enrichment and discuss implications for future Hg levels. The plausibility of sensitivity simulations is evaluated against multiple independent lines of observation, including natural archives and direct measurements of present-day environmental Hg concentrations. It has been previously reported that pre-industrial enrichment recorded in sediment and peat disagree by more than a factor of 10. We find this difference is largely erroneous and caused by comparing peat and sediment against different reference time periods. After correcting this inconsistency, median enrichment in Hg accumulation since pre-industrial 1760 to 1880 is a factor of 4.3 for peat and 3.0 for sediment. Pre-industrial accumulation in peat and sediment is a factor of ∼ 5 greater than the precolonial era (3000 BC to 1550 AD). Model scenarios that omit atmospheric emissions of Hg from early mining are inconsistent with observational constraints on the present-day atmospheric, oceanic, and soil Hg reservoirs, as well as the magnitude of enrichment in archives. Future reductions in anthropogenic emissions will initiate a decline in atmospheric concentrations within 1 year, but stabilization of subsurface and deep ocean Hg levels requires aggressive controls. These findings are robust to the ranges of uncertainty in past emissions and Hg cycling.


Environmental Science & Technology | 2014

Progress on Understanding Atmospheric Mercury Hampered by Uncertain Measurements

Daniel A. Jaffe; Seth N. Lyman; Helen Marie Amos; Mae Sexauer Gustin; Jiaoyan Huang; Noelle E. Selin; Leonard Levin; Arnout ter Schure; Robert P. Mason; Robert W. Talbot; Andrew Rutter; Brandon Finley; Lyatt Jaeglé; Viral Shah; Crystal D. McClure; Jesse L. Ambrose; Lynne Gratz; Steven E. Lindberg; Peter Weiss-Penzias; Guey Rong Sheu; Dara Feddersen; Milena Horvat; Ashu Dastoor; Anthony J. Hynes; H.-K. Mao; Jeroen E. Sonke; F. Slemr; Jenny A. Fisher; Ralf Ebinghaus; Yanxu Zhang

by Uncertain Measurements Daniel A. Jaffe,*,†,‡ Seth Lyman, Helen M. Amos, Mae S. Gustin, Jiaoyan Huang, Noelle E. Selin, Leonard Levin, Arnout ter Schure, Robert P. Mason, Robert Talbot, Andrew Rutter, Brandon Finley,† Lyatt Jaegle,‡ Viral Shah,‡ Crystal McClure,‡ Jesse Ambrose,† Lynne Gratz,† Steven Lindberg, Peter Weiss-Penzias, Guey-Rong Sheu, Dara Feddersen, Milena Horvat, Ashu Dastoor, Anthony J. Hynes, Huiting Mao, Jeroen E. Sonke, Franz Slemr, Jenny A. Fisher, Ralf Ebinghaus, Yanxu Zhang, and Grant Edwards⪫


Global Biogeochemical Cycles | 2015

Biogeochemical drivers of the fate of riverine mercury discharged to the global and Arctic oceans

Yanxu Zhang; Daniel J. Jacob; Stephanie Dutkiewicz; Helen Marie Amos; Michael Smither Long; Elynor M Sunderland

Rivers discharge 28 ± 13 Mmol yr−1 of mercury (Hg) to ocean margins, an amount comparable to atmospheric deposition to the global oceans. Most of the Hg discharged by rivers is sequestered by burial of benthic sediment in estuaries or the coastal zone, but some is evaded to the atmosphere and some is exported to the open ocean. We investigate the fate of riverine Hg by developing a new global 3-D simulation for Hg in the Massachusetts Institute of Technology ocean general circulation model. The model includes plankton dynamics and carbon respiration (DARWIN project model) coupled to inorganic Hg chemistry. Results are consistent with observed spatial patterns and magnitudes of surface ocean Hg concentrations. We use observational constraints on seawater Hg concentrations and evasion to infer that most Hg from rivers is sorbed to refractory organic carbon and preferentially buried. Only 6% of Hg discharged by rivers (1.8 Mmol yr−1) is transported to the open ocean on a global basis. This fraction varies from a low of 2.6% in East Asia due to the barrier imposed by the Korean Peninsula and Japanese archipelago, up to 25% in eastern North America facilitated by the Gulf Stream. In the Arctic Ocean, low tributary particle loads and efficient degradation of particulate organic carbon by deltaic microbial communities favor a more labile riverine Hg pool. Evasion of Hg to the Arctic atmosphere is indirectly enhanced by heat transport during spring freshet that accelerates sea ice melt and ice rafting. Discharges of 0.23 Mmol Hg yr−1 from Arctic rivers can explain the observed summer maximum in the Arctic atmosphere, and this magnitude of releases is consistent with recent observations. Our work indicates that rivers are major contributors to Hg loads in the Arctic Ocean.


International Journal of Environmental Research and Public Health | 2017

Toward an assessment of the global inventory of present-day mercury releases to freshwater environments

David Kocman; Simon Wilson; Helen Marie Amos; Kevin Telmer; Frits Steenhuisen; Elsie M. Sunderland; Robert P. Mason; P.M. Outridge; Milena Horvat

Aquatic ecosystems are an essential component of the biogeochemical cycle of mercury (Hg), as inorganic Hg can be converted to toxic methylmercury (MeHg) in these environments and reemissions of elemental Hg rival anthropogenic Hg releases on a global scale. Quantification of effluent Hg releases to aquatic systems globally has focused on discharges to the global oceans, rather than contributions to freshwater systems that affect local exposures and risks associated with MeHg. Here we produce a first-estimate of sector-specific, spatially resolved global aquatic Hg discharges to freshwater systems. We compare our release estimates to atmospheric sources that have been quantified elsewhere. By analyzing available quantitative and qualitative information, we estimate that present-day global Hg releases to freshwater environments (rivers and lakes) associated with anthropogenic activities have a lower bound of ~1000 Mg·a−1. Artisanal and small-scale gold mining (ASGM) represents the single largest source, followed by disposal of mercury-containing products and domestic waste water, metal production, and releases from industrial installations such as chlor-alkali plants and oil refineries. In addition to these direct anthropogenic inputs, diffuse inputs from land management activities and remobilization of Hg previously accumulated in terrestrial ecosystems are likely comparable in magnitude. Aquatic discharges of Hg are greatly understudied and further constraining associated data gaps is crucial for reducing the uncertainties in the global biogeochemical Hg budget.


Global Biogeochemical Cycles | 2013

Legacy impacts of all‐time anthropogenic emissions on the global mercury cycle

Helen Marie Amos; Daniel J. Jacob; David G. Streets; Elsie M. Sunderland


Atmospheric Chemistry and Physics | 2011

Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition

Helen Marie Amos; Daniel J. Jacob; Christopher D. Holmes; Jenny A. Fisher; Qiaoqiao Wang; Robert M. Yantosca; Elizabeth S. Corbitt; E. Galarneau; A. P. Rutter; Mae Sexauer Gustin; Alexandra Steffen; James J. Schauer; J. A. Graydon; V. L. Louis; Robert W. Talbot; Eric S. Edgerton; Yanxu Zhang; Elynor M Sunderland


Nature Geoscience | 2012

Riverine source of Arctic Ocean mercury inferred from atmospheric observations

Jenny A. Fisher; Daniel J. Jacob; Anne L. Soerensen; Helen Marie Amos; Alexandra Steffen; Elsie M. Sunderland


Environmental Science & Technology | 2014

Historical Mercury Releases from Commercial Products: Global Environmental Implications

Hannah M. Horowitz; Daniel J. Jacob; Helen Marie Amos; David G. Streets; Elynor M Sunderland

Collaboration


Dive into the Helen Marie Amos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David G. Streets

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge