Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helen Piontkivska is active.

Publication


Featured researches published by Helen Piontkivska.


Journal of Virology | 2004

A Dominant Role for CD8+-T-Lymphocyte Selection in Simian Immunodeficiency Virus Sequence Variation

David H. O'Connor; Adrian B. McDermott; Kendall Krebs; Elizabeth Dodds; Jacqueline E. Miller; Edna J. Gonzalez; Timothy Jacoby; Levi Yant; Helen Piontkivska; Ralph Pantophlet; Dennis R. Burton; William M. Rehrauer; Nancy A. Wilson; Austin L. Hughes; David I. Watkins

ABSTRACT CD8+ T lymphocytes (CD8-TL) select viral escape variants in both human immunodeficiency virus and simian immunodeficiency virus (SIV) infections. The frequency of CD8-TL viral escape as well as the contribution of escape to overall virus diversification has not been assessed. We quantified CD8-TL selection in SIV infections by sequencing viral genomes from 35 SIVmac239-infected animals at the time of euthanasia. Here we show that positive selection for sequences encoding 46 known CD8-TL epitopes is comparable to the positive selection observed for the variable loops of env. We also found that >60% of viral variation outside of the viral envelope occurs within recognized CD8-TL epitopes. Therefore, we conclude that CD8-TL selection is the dominant cause of SIV diversification outside of the envelope.


Genetics | 2009

Comparative Mitochondrial Genomics of Freshwater Mussels (Bivalvia: Unionoida) With Doubly Uniparental Inheritance of mtDNA: Gender-Specific Open Reading Frames and Putative Origins of Replication

Sophie Breton; Hélène Doucet Beaupré; Donald T. Stewart; Helen Piontkivska; Moumita Karmakar; Arthur E. Bogan; Pierre U. Blier; Walter R. Hoeh

Doubly uniparental inheritance (DUI) of mitochondrial DNA in marine mussels (Mytiloida), freshwater mussels (Unionoida), and marine clams (Veneroida) is the only known exception to the general rule of strict maternal transmission of mtDNA in animals. DUI is characterized by the presence of gender-associated mitochondrial DNA lineages that are inherited through males (male-transmitted or M types) or females (female-transmitted or F types), respectively. This unusual system constitutes an excellent model for studying basic aspects of mitochondrial DNA inheritance and the evolution of mtDNA genomes in general. Here we compare published mitochondrial genomes of unionoid bivalve species with DUI, with an emphasis on characterizing unassigned regions, to identify regions of the F and M mtDNA genomes that could (i) play a role in replication or transcription of the mtDNA molecule and/or (ii) determine whether a genome will be transmitted via the female or the male gamete. Our results reveal the presence of one F-specific and one M-specific open reading frames (ORFs), and we hypothesize that they play a role in the transmission and/or gender-specific adaptive functions of the M and F mtDNA genomes in unionoid bivalves. Three major unassigned regions shared among all F and M unionoid genomes have also been identified, and our results indicate that (i) two of them are potential heavy-strand control regions (OH) for regulating replication and/or transcription and that (ii) multiple and potentially bidirectional light-strand origins of replication (OL) are present in unionoid F and M mitochondrial genomes. We propose that unassigned regions are the most promising candidate sequences in which to find regulatory and/or gender-specific sequences that could determine whether a mitochondrial genome will be maternally or paternally transmitted.


PLOS ONE | 2007

CD8+ T Cells from SIV Elite Controller Macaques Recognize Mamu-B*08-Bound Epitopes and Select for Widespread Viral Variation

John T. Loffredo; Thomas C. Friedrich; Enrique J. León; Jason J. Stephany; Denise S. Rodrigues; Sean P. Spencer; Alex T. Bean; Dominic R. Beal; Benjamin J. Burwitz; Richard Rudersdorf; Lyle T. Wallace; Shari M. Piaskowski; Gemma E. May; John Sidney; Emma Gostick; Nancy A. Wilson; David A. Price; Esper G. Kallas; Helen Piontkivska; Austin L. Hughes; Alessandro Sette; David I. Watkins

Background It is generally accepted that CD8+ T cell responses play an important role in control of immunodeficiency virus replication. The association of HLA-B27 and -B57 with control of viremia supports this conclusion. However, specific correlates of viral control in individuals expressing these alleles have been difficult to define. We recently reported that transient in vivo CD8+ cell depletion in simian immunodeficiency virus (SIV)-infected elite controller (EC) macaques resulted in a brief period of viral recrudescence. SIV replication was rapidly controlled with the reappearance of CD8+ cells, implicating that these cells actively suppress viral replication in ECs. Methods and Findings Here we show that three ECs in that study made at least seven robust CD8+ T cell responses directed against novel epitopes in Vif, Rev, and Nef restricted by the MHC class I molecule Mamu-B*08. Two of these Mamu-B*08-positive animals subsequently lost control of SIV replication. Their breakthrough virus harbored substitutions in multiple Mamu-B*08-restricted epitopes. Indeed, we found evidence for selection pressure mediated by Mamu-B*08-restricted CD8+ T cells in all of the newly identified epitopes in a cohort of chronically infected macaques. Conclusions Together, our data suggest that Mamu-B*08-restricted CD8+ T cell responses effectively control replication of pathogenic SIVmac239. All seven regions encoding Mamu-B*08-restricted CD8+ T cell epitopes also exhibit amino acid replacements typically seen only in the presence of Mamu-B*08, suggesting that the variation we observe is indeed selected by CD8+ T cell responses. SIVmac239 infection of Indian rhesus macaques expressing Mamu-B*08 may therefore provide an animal model for understanding CD8+ T cell-mediated control of HIV replication in humans.


Journal of Virology | 2008

Comprehensive Immunological Evaluation Reveals Surprisingly Few Differences between Elite Controller and Progressor Mamu-B*17-Positive Simian Immunodeficiency Virus-Infected Rhesus Macaques

Nicholas J. Maness; Levi Yant; Chungwon Chung; John T. Loffredo; Thomas C. Friedrich; Shari M. Piaskowski; Jessica Furlott; Gemma E. May; Taeko Soma; Enrique J. León; Nancy A. Wilson; Helen Piontkivska; Austin L. Hughes; John Sidney; Alessandro Sette; David I. Watkins

ABSTRACT The association between particular major histocompatibility complex class I (MHC-I) alleles and control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication implies that certain CD8+ T-lymphocyte (CD8-TL) responses are better able than others to control viral replication in vivo. However, possession of favorable alleles does not guarantee improved prognosis or viral control. In rhesus macaques, the MHC-I allele Mamu-B*17 is correlated with reduced viremia and is overrepresented in macaques that control SIVmac239, termed elite controllers (ECs). However, there is so far no mechanistic explanation for this phenomenon. Here we show that the chronic-phase Mamu-B*17-restricted repertoire is focused primarily against just five epitopes—VifHW8, EnvFW9, NefIW9, NefMW9, and envARFcRW9—in both ECs and progressors. Interestingly, Mamu-B*17-restricted CD8-TL do not target epitopes in Gag. CD8-TL escape variation occurred in all targeted Mamu-B*17-restricted epitopes. However, recognition of escape variant peptides was commonly observed in both ECs and progressors. Wild-type sequences in the VifHW8 epitope tended to be conserved in ECs, but there was no evidence that this enhances viral control. In fact, no consistent differences were detected between ECs and progressors in any measured parameter. Our data suggest that the narrowly focused Mamu-B*17-restricted repertoire suppresses virus replication and drives viral evolution. It is, however, insufficient in the majority of individuals that express the “protective” Mamu-B*17 molecule. Most importantly, our data indicate that the important differences between Mamu-B*17-positive ECs and progressors are not readily discernible using standard assays to measure immune responses.


BMC Cancer | 2010

Analysis of gene expression in prostate cancer epithelial and interstitial stromal cells using laser capture microdissection

Jennifer L. Gregg; Kathleen E Brown; Eric M. Mintz; Helen Piontkivska; Gail Fraizer

BackgroundThe prostate gland represents a multifaceted system in which prostate epithelia and stroma have distinct physiological roles. To understand the interaction between stroma and glandular epithelia, it is essential to delineate the gene expression profiles of these two tissue types in prostate cancer. Most studies have compared tumor and normal samples by performing global expression analysis using a mixture of cell populations. This report presents the first study of prostate tumor tissue that examines patterns of differential expression between specific cell types using laser capture microdissection (LCM).MethodsLCM was used to isolate distinct cell-type populations and identify their gene expression differences using oligonucleotide microarrays. Ten differentially expressed genes were then analyzed in paired tumor and non-neoplastic prostate tissues by quantitative real-time PCR. Expression patterns of the transcription factors, WT1 and EGR1, were further compared in established prostate cell lines. WT1 protein expression was also examined in prostate tissue microarrays using immunohistochemistry.ResultsThe two-step method of laser capture and microarray analysis identified nearly 500 genes whose expression levels were significantly different in prostate epithelial versus stromal tissues. Several genes expressed in epithelial cells (WT1, GATA2, and FGFR-3) were more highly expressed in neoplastic than in non-neoplastic tissues; conversely several genes expressed in stromal cells (CCL5, CXCL13, IGF-1, FGF-2, and IGFBP3) were more highly expressed in non-neoplastic than in neoplastic tissues. Notably, EGR1 was also differentially expressed between epithelial and stromal tissues. Expression of WT1 and EGR1 in cell lines was consistent with these patterns of differential expression. Importantly, WT1 protein expression was demonstrated in tumor tissues and was absent in normal and benign tissues.ConclusionsThe prostate represents a complex mix of cell types and there is a need to analyze distinct cell populations to better understand their potential interactions. In the present study, LCM and microarray analysis were used to identify novel gene expression patterns in prostate cell populations, including identification of WT1 expression in epithelial cells. The relevance of WT1 expression in prostate cancer was confirmed by analysis of tumor tissue and cell lines, suggesting a potential role for WT1 in prostate tumorigenesis.


Immunogenetics | 2008

Functional Diversification of the Toll-like Receptor Gene Family

Austin L. Hughes; Helen Piontkivska

Phylogenetic analyses supported the hypothesis that the vertebrate toll-like receptors (TLRs) include two very ancient groups that arose by gene duplication prior to the divergence of protostomes and deuterostomes: (1) the TLR1 family (including mammalian TLR1, TLR2, TLR6, and TLR10); and (2) a clade including the remainder of mammalian TLRs. Correlating data on ligand type, subcellular localization, and gene expression in leukocytes and other tissues with the phylogeny provided evidence that certain major functional specializations within the TLRs occurred after ancient gene duplication events and that these traits have been retained through further events of gene duplication. For example, the recognition of bacterial lipoproteins appears to have arisen in the ancestor of the TLR1 family and continues to characterize members of that family whose ligands are known. Likewise, expression on the endosomal membrane and the recognition of nucleic acids appears to have been arisen in the ancestor of the TLR7 family and some related TLRs. On the other hand, gene expression patterns across tissues appear to have been much more volatile over the evolution of the vertebrate TLRs, since genes may show expression profiles similar to those of distantly related genes but dissimilar to those of closely related genes. Thus, the vertebrate TLRs provide an example of a multi-gene family in which gene duplication has been followed by extensive changes in certain aspects of gene function, while others have been conserved throughout vertebrate history.


BMC Evolutionary Biology | 2005

DNA repeat arrays in chicken and human genomes and the adaptive evolution of avian genome size.

Austin L. Hughes; Helen Piontkivska

BackgroundBirds have smaller average genome sizes than other tetrapod classes, and it has been proposed that a relatively low frequency of repeating DNA is one factor in reduction of avian genome sizes.ResultsDNA repeat arrays in the sequenced portion of the chicken (Gallus gallus) autosomes were quantified and compared with those in human autosomes. In the chicken 10.3% of the genome was occupied by DNA repeats, in contrast to 44.9% in human. In the chicken, the percentage of a chromosome occupied by repeats was positively correlated with chromosome length, but even the largest chicken chromosomes had repeat densities much lower than those in human, indicating that avoidance of repeats in the chicken is not confined to minichromosomes. When 294 simple sequence repeat types shared between chicken and human genomes were compared, mean repeat array length and maximum repeat array length were significantly lower in the chicken than in human.ConclusionsThe fact that the chicken simple sequence repeat arrays were consistently smaller than arrays of the same type in human is evidence that the reduction in repeat array length in the chicken has involved numerous independent evolutionary events. This implies that reduction of DNA repeats in birds is the result of adaptive evolution. Reduction of DNA repeats on minichromosomes may be an adaptation to permit chiasma formation and alignment of small chromosomes. However, the fact that repeat array lengths are consistently reduced on the largest chicken chromosomes supports the hypothesis that other selective factors are at work, presumably related to the reduction of cell size and consequent advantages for the energetic demands of flight.


Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2011

Molecular characterization and mRNA expression of two key enzymes of hypoxia-sensing pathways in eastern oysters Crassostrea virginica (Gmelin): hypoxia-inducible factor α (HIF-α) and HIF-prolyl hydroxylase (PHD).

Helen Piontkivska; J. Sook Chung; Anna V. Ivanina; Eugene P. Sokolov; Sirinart Techa; Inna M. Sokolova

Oxygen homeostasis is crucial for development, survival and normal function of all metazoans. A family of transcription factors called hypoxia-inducible factors (HIF) is critical in mediating the adaptive responses to reduced oxygen availability. The HIF transcription factor consists of a constitutively expressed β subunit and an oxygen-dependent α subunit; the abundance of the latter determines the activity of HIF and is regulated by a family of O(2)- and Fe(2+)-dependent enzymes prolyl hydroxylases (PHDs). Currently very little is known about the function of this important pathway and the molecular structure of its key players in hypoxia-tolerant intertidal mollusks including oysters, which are among the animal champions of anoxic and hypoxic tolerance and thus can serve as excellent models to study the role of HIF cascade in adaptations to oxygen deficiency. We have isolated transcripts of two key components of the oxygen sensing pathway - the oxygen-regulated HIF-α subunit and PHD - from an intertidal mollusk, the eastern oyster Crassostrea virginica, and determined the transcriptional responses of these two genes to anoxia, hypoxia and cadmium (Cd) stress. HIF-α and PHD homologs from eastern oysters C. virginica show significant sequence similarity and share key functional domains with the earlier described isoforms from vertebrates and invertebrates. Phylogenetic analysis shows that genetic diversification of HIF and PHD isoforms occurred within the vertebrate lineage indicating functional diversification and specialization of the oxygen-sensing pathways in this group, which parallels situation observed for many other important genes. HIF-α and PHD homologs are broadly expressed at the mRNA level in different oyster tissues and show transcriptional responses to prolonged hypoxia in the gills consistent with their putative role in oxygen sensing and the adaptive response to hypoxia. Similarity in amino acid sequence, domain structure and transcriptional responses between HIF-α and PHD homologs from oysters and other invertebrate and vertebrate species implies the highly conserved functions of these genes throughout the evolutionary history of animals, in accordance with their critical role in oxygen sensing and homeostasis.


BMC Neuroscience | 2007

Identification of novel light-induced genes in the suprachiasmatic nucleus

Veronica M. Porterfield; Helen Piontkivska; Eric M. Mintz

BackgroundThe transmission of information about the photic environment to the circadian clock involves a complex array of neurotransmitters, receptors, and second messenger systems. Exposure of an animal to light during the subjective night initiates rapid transcription of a number of immediate-early genes in the suprachiasmatic nucleus of the hypothalamus. Some of these genes have known roles in entraining the circadian clock, while others have unknown functions. Using laser capture microscopy, microarray analysis, and quantitative real-time PCR, we performed a comprehensive screen for changes in gene expression immediately following a 30 minute light pulse in suprachiasmatic nucleus of mice.ResultsThe results of the microarray screen successfully identified previously known light-induced genes as well as several novel genes that may be important in the circadian clock. Newly identified light-induced genes include early growth response 2, proviral integration site 3, growth-arrest and DNA-damage-inducible 45 beta, and TCDD-inducible poly(ADP-ribose) polymerase. Comparative analysis of promoter sequences revealed the presence of evolutionarily conserved CRE and associated TATA box elements in most of the light-induced genes, while other core clock genes generally lack this combination of promoter elements.ConclusionThe photic signalling cascade in the suprachiasmatic nucleus activates an array of immediate-early genes, most of which have unknown functions in the circadian clock. Detected evolutionary conservation of CRE and TATA box elements in promoters of light-induced genes suggest that the functional role of these elements has likely remained the same over evolutionary time across mammalian orders.


Kinetoplastid Biology and Disease | 2003

Molecular phylogenetics of Trypanosomatidae: contrasting results from 18S rRNA and protein phylogenies

Austin L. Hughes; Helen Piontkivska

Phylogenetic analyses of the family Trypanosomatidae have been conducted using both 18S rRNA gene sequences and a variety of protein sequences. Using a variety of phylogenetic methods, 18S rRNA phylogenies indicate that the genus Trypanosoma is not monophyletic. Rather, they suggest that the American and African trypanosomes constitute distinct clades. By contrast, phylogenetic analyses of available sequences in 42 protein families gene generally supported monophyly of the genus Trypanosoma. One possible explanation for these conflicting results is poor taxon sampling in the case of protein coding genes, most of which have been sequenced for only a few species of Trypanosomatidae.

Collaboration


Dive into the Helen Piontkivska's collaboration.

Top Co-Authors

Avatar

Austin L. Hughes

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Anna V. Ivanina

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar

Sinu Paul

Kent State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masatoshi Nei

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge