Helena Štorchová
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helena Štorchová.
Journal of Hazardous Materials | 2012
Premysl Landa; Radomira Vankova; Jana Andrlova; Jan Hodek; Petr Marsik; Helena Štorchová; Jason C. White; Tomas Vanek
The effect of exposure to 100 mg/L zinc oxide (nZnO), fullerene soot (FS) or titanium dioxide (nTiO(2)) nanoparticles on gene expression in Arabidopsis thaliana roots was studied using microarrays. After 7d, nZnO, FS, or nTiO(2) exposure resulted in 660 up- and 826 down-regulated genes, 232 up- and 189 down-regulated genes, and 80 up- and 74 down-regulated genes, respectively (expression difference>2-fold; p[t test]<0.05). The genes induced by nZnO and FS include mainly ontology groups annotated as stress responsive, including both abiotic (oxidative, salt, water deprivation) and biotic (wounding and defense to pathogens) stimuli. The down-regulated genes upon nZnO exposure were involved in cell organization and biogenesis, including translation, nucleosome assembly and microtubule based process. FS largely repressed the transcription of genes involved in electron transport and energy pathways. Only mild changes in gene expression were observed upon nTiO(2) exposure, which resulted in up- and down-regulation of genes involved mainly in responses to biotic and abiotic stimuli. The data clearly indicate that the mechanisms of phytotoxicity are highly nanoparticle dependent despite of a limited overlap in gene expression response.
Journal of Experimental Botany | 2013
Hana Macková; Marie Hronková; Jana Dobrá; Veronika Turečková; Ondřej Novák; Zuzana Lubovská; Václav Motyka; D. Haisel; Tomáš Hájek; Ilja Tom Prášil; Alena Gaudinová; Helena Štorchová; Eva Ge; Tomáš Werner; Thomas Schmülling; Radomira Vankova
Responses to drought, heat, and combined stress were compared in tobacco (Nicotiana tabacum L.) plants ectopically expressing the cytokinin oxidase/dehydrogenase CKX1 gene of Arabidopsis thaliana L. under the control of either the predominantly root-expressed WRKY6 promoter or the constitutive 35S promoter, and in the wild type. WRKY6:CKX1 plants exhibited high CKX activity in the roots under control conditions. Under stress, the activity of the WRKY6 promoter was down-regulated and the concomitantly reduced cytokinin degradation coincided with raised bioactive cytokinin levels during the early phase of the stress response, which might contribute to enhanced stress tolerance of this genotype. Constitutive expression of CKX1 resulted in an enlarged root system, a stunted, dwarf shoot phenotype, and a low basal level of expression of the dehydration marker gene ERD10B. The high drought tolerance of this genotype was associated with a relatively moderate drop in leaf water potential and a significant decrease in leaf osmotic potential. Basal expression of the proline biosynthetic gene P5CSA was raised. Both wild-type and WRKY6:CKX1 plants responded to heat stress by transient elevation of stomatal conductance, which correlated with an enhanced abscisic acid catabolism. 35S:CKX1 transgenic plants exhibited a small and delayed stomatal response. Nevertheless, they maintained a lower leaf temperature than the other genotypes. Heat shock applied to drought-stressed plants exaggerated the negative stress effects, probably due to the additional water loss caused by a transient stimulation of transpiration. The results indicate that modulation of cytokinin levels may positively affect plant responses to abiotic stress through a variety of physiological mechanisms.
BioTechniques | 2006
Jiří Libus; Helena Štorchová
Quantitative reverse transcription PCR (RT-PCR) is typically used to assay transcript abundance (often generalized as “gene expression”) by measuring a specific cDNA level. The method is very sensitive and is suitable for a broad range of cDNA concentrations. Its reliability depends on, among other factors, appropriate normalization (for a review, see References 1 and 2). The preferred method of quantitative RT-PCR normalization uses housekeeping genes with presumably invariant levels of expression as internal controls. Housekeeping gene-based normalization corrects the measured transcript levels for variable starting RNA amounts and for differences in RT efficiency. However, as there are no universally applicable genes with invariant expression, it is necessary to carefully evaluate the expression of candidate reference genes for every particular experimental system. Normalization with suboptimal housekeeping genes may result in different estimated values and lead to erroneous interpretations (3). To avoid a bias caused by the expression fluctuation of a single reference gene, Vandesompele et al. (4) proposed computation of the correction factor from several internal
Journal of Plant Physiology | 2011
Jana Dobrá; Radomira Vankova; Marie Havlová; Adlai J. Burman; Jiří Libus; Helena Štorchová
In plants, members of gene families differ in function and mode of regulation. Fine-tuning of the expression of individual genes helps plants to cope with a variable environment. Genes encoding proline dehydrogenase (PDH), the key enzyme in proline degradation, and the proline biosynthetic enzyme, Δ(1)-pyrroline-5-carboxylate synthetase (P5CS), play an important role in responses to osmotic and drought stresses. We compared the expression patterns of three PDH and two putative P5CS genes during drought stress progression and subsequent recovery. Whereas the NtPDH1 gene was affected little by dehydration or rehydration, the NtPDH2 gene responded rapidly to both conditions, and was down-regulated under drought. The CIG1 gene, encoding cytokinin-inducible PDH, exhibited an intermediate transcription pattern. Whereas P5CS B was not affected by the stress conditions, the P5CS A gene was highly up-regulated during drought stress. CIG1 and NtPDH1 transcription was not activated, and P5CS A was only partially reduced in leaves within 24-h after rehydration, a re-watering period sufficient for large physiological changes to occur. The lack of activation of tobacco PDH genes and incomplete reduction of the P5CS A gene in leaves within 24-h of rehydration may reflect the need for the protection of plants to potential subsequent stresses. The data indicate that recovery is a specific physiological process following different patterns in leaves and roots.
Molecular Ecology | 2002
Ted H. M. Mes; P. Kuperus; J. Kirschner; J. Stepanek; Helena Štorchová; P. Oosterveld; J.C.M. den Nijs
This study aims to identify genetically diverged clone mates in apomictic dandelions. Clone mates are defined as individuals that may have diverged as a result of mutation accumulation and that have undergone only clonal reproduction since their most recent common ancestor. Based on distinctive morphology and an aberrant and rare chloroplast haplotype, northwest European individuals of Taraxacum section Naevosa are well suited for the detection of clonal lineages in which mutation has occurred. In the case of strictly clonal reproduction, nuclear genetic variability was expected to be hierarchically organized. Nucleotide polymorphisms in internal transcribed spacer (ITS) sequences, however, were incompatible with a clonal structure of the Norwegian individuals, probably due to persistent ancestral polymorphisms that pre‐date the origin of the Naevosa clone. This interpretation is supported by the presence of ITS variants in section Naevosa that were also found in distantly related dandelions. In contrast to the ITS sequence data, amplified fragment length polymorphisms (AFLPs), isozymes and microsatellites strongly supported the contention of prolonged clonal reproduction and mutation accumulation in Norwegian Naevosa. Because these markers are generally considered to be more variable and more rapidly evolving than ITS sequences, mutations in these markers probably evolved after the origin of the clone. Within the Norwegian clone, a surprising number of markers distinguished the clone mates. As a consequence, incorporation of mutation in the detection of clone mates is anticipated to have a big impact on estimates of size, geographical range and age of clones as well as on experimental designs of studies of clonal plants.
Molecular Genetics and Genomics | 2015
James D. Stone; Helena Štorchová
We review current studies of plant mitochondrial transcriptomes performed by RNA-seq, highlighting methodological challenges unique to plant mitochondria. We propose ways to improve read mapping accuracy and sensitivity such as modifying a reference genome at RNA editing sites, using splicing- and ambiguity-competent aligners, and masking chloroplast- or nucleus-derived sequences. We also outline modified RNA-seq methods permitting more accurate detection and quantification of partially edited sites and the identification of transcription start sites on a genome-wide scale. The application of RNA-seq goes beyond genome-wide determination of transcript levels and RNA maturation events, and emerges as an elegant resource for the comprehensive identification of editing, splicing, and transcription start sites. Thus, improved RNA-seq methods customized for plant mitochondria hold tremendous potential for advancing our understanding of plant mitochondrial evolution and cyto-nuclear interactions in a broad array of plant species.
Genome | 2000
Ted H. M. Mes; P. Kuperus; J. Kirschner; J. Stepanek; P. Oosterveld; Helena Štorchová; J. C. M. den Nijs
Sequence variation in 2.2 kb of non-coding regions of the chloroplast genome of eight dandelions (Taraxacum: Lactuceae) from Asia and Europe is interpreted in the light of the phylogenetic signal of base substitutions vs. indels (insertions-deletions). The four non-coding regions displayed a total of approximately 30 structural mutations of which 9 are potentially phylogenetically informative. Insertions, deletions, and an inversion were found that involved consecutive stretches of up to 172 bases. When compared to phylogenetic relationships of the chloroplast genomes based on nucleotide substitutions only, many homoplasious indels (33%) were detected that differed considerably in length and did not comprise simple sequence repeats typically associated with replication slippage. Though many indels in the intergenic spacers were associated with direct repeats, frequently, the variable stretches participated in inverted repeat stabilized hairpins. In each intergenic spacer or intron examined, nucleotide stretches ranging from 30 to 60 bp were able to fold into stabilized secondary structures. When these indels were homoplasious, they always ranked among the most stabilized hairpins in the non-coding regions. The association of higher order structures that involve both classes of repeats and parallel structural mutations in hot spot regions of the chloroplast genome can be used to differentiate among mutations that differ in phylogenetic reliability.
Applied and Environmental Microbiology | 2013
Martina Janoušková; Karol Krak; Cameron Wagg; Helena Štorchová; Petra Caklová; Miroslav Vosátka
ABSTRACT Communities of arbuscular mycorrhizal fungi (AMF) are crucial for promoting plant productivity in most terrestrial systems, including anthropogenically managed ecosystems. Application of AMF inocula has therefore become a widespread practice. It is, however, pertinent to understand the mechanisms that govern AMF community composition and their performance in order to design successful manipulations. Here we assess whether the composition and plant growth-promotional effects of a synthetic AMF community can be altered by inoculum additions of the isolates forming the community. This was determined by following the effects of three AMF isolates, each inoculated in two propagule densities into a preestablished AMF community. Fungal abundance in roots and plant growth were evaluated in three sequential harvests. We found a transient positive response in AMF abundance to the intraspecific inoculation only in the competitively weakest isolate. The other two isolates responded negatively to intra- and interspecific inoculations, and in some cases plant growth was also reduced. Our results suggest that increasing the AMF density may lead to increased competition among fungi and a trade-off with their ability to promote plant productivity. This is a key ecological aspect to consider when introducing AMF into soils.
Journal of Plant Physiology | 2014
Zuzana Lubovská; Jana Dobrá; Helena Štorchová; Naďa Wilhelmová; Radomira Vankova
Cytokinins (CKs) as well as the antioxidant enzyme system (AES) play important roles in plant stress responses. The expression and activity of antioxidant enzymes (AE) were determined in drought, heat and combination of both stresses, comparing the response of tobacco plants overexpressing the main cytokinin degrading enzyme, cytokinin oxidase/dehydrogenase, under the control of root-specific WRKY6 promoter (W6:CKX1 plants) or constitutive promoter (35S:CKX1 plants) and the corresponding wild-type (WT). Expression levels as well as activities of cytosolic ascorbate peroxidase, catalase 3, and cytosolic superoxide dismutase were low under optimal conditions and increased after heat and combined stress in all genotypes. Unlike catalase 3, two other peroxisomal enzymes, catalase 1 and catalase 2, were transcribed extensively under control conditions. Heat stress, in contrast to drought or combined stress, increased catalase 1 and reduced catalase 2 expression in WT and W6:CKX1 plants. In 35S:CKX1, catalase 1 expression was enhanced by heat or drought, but not under combined stress conditions. Mitochondrial superoxide dismutase expression was generally higher in 35S:CKX1 plants than in WT. Genes encoding for chloroplastic AEs, stromatal ascorbate peroxidase, thylakoidal ascorbate peroxidase and chloroplastic superoxide dismutase, were strongly transcribed under control conditions. All stresses down-regulated their expression in WT and W6:CKX1, whereas more stress-tolerant 35S:CKX1 plants maintained high expression during drought and heat. The achieved data show that the effect of down-regulation of CK levels on AES may be mediated by altered habit, resulting in improved stress tolerance, which is associated with diminished stress impact on photosynthesis, and changes in source/sink relations.
Applied and Environmental Microbiology | 2012
Karol Krak; Martina Janoušková; Petra Caklová; Miroslav Vosátka; Helena Štorchová
ABSTRACT Real-time PCR in nuclear ribosomal DNA (nrDNA) is becoming a well-established tool for the quantification of arbuscular mycorrhizal (AM) fungi, but this genomic region does not allow the specific amplification of closely related genotypes. The large subunit of mitochondrial DNA (mtDNA) has a higher-resolution power, but mtDNA-based quantification has not been previously explored in AM fungi. We applied real-time PCR assays targeting the large subunit of mtDNA to monitor the DNA dynamics of two isolates of Glomus intraradices sensu lato coexisting in the roots of medic (Medicago sativa). The mtDNA-based quantification was compared to quantification in nrDNA. The ratio of copy numbers determined by the nrDNA- and mtDNA-based assays consistently differed between the two isolates. Within an isolate, copy numbers of the nuclear and the mitochondrial genes were closely correlated. The two quantification approaches revealed similar trends in the dynamics of both isolates, depending on whether they were inoculated alone or together. After 12 weeks of cultivation, competition between the two isolates was observed as a decrease in the mtDNA copy numbers of one of them. The coexistence of two closely related isolates, which cannot be discriminated by nrDNA-based assays, was thus identified as a factor influencing the dynamics of AM fungal DNA in roots. Taken together, the results of this study show that real-time PCR assays targeted to the large subunit of mtDNA may become useful tools for the study of coexisting AM fungi.