Radomira Vankova
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Radomira Vankova.
The Plant Cell | 2011
Rie Nishiyama; Yasuko Watanabe; Yasunari Fujita; Dung Tien Le; Mikiko Kojima; Tomáš Werner; Radomira Vankova; Kazuko Yamaguchi-Shinozaki; Kazuo Shinozaki; Tatsuo Kakimoto; Hitoshi Sakakibara; Thomas Schmülling; Lam-Son Phan Tran
Functional analyses of cytokinin (CK)-deficient plants provide direct evidence that CKs negatively regulate plant response to drought and salt stresses. CK-deficient plants exhibited a strong stress-tolerant phenotype associated with abscisic acid (ABA) hypersensitivity. This study suggests that mutual regulation mechanisms between CK and ABA affect the plant’s adaptation to stressors and plant growth and development. Cytokinins (CKs) regulate plant growth and development via a complex network of CK signaling. Here, we perform functional analyses with CK-deficient plants to provide direct evidence that CKs negatively regulate salt and drought stress signaling. All CK-deficient plants with reduced levels of various CKs exhibited a strong stress-tolerant phenotype that was associated with increased cell membrane integrity and abscisic acid (ABA) hypersensitivity rather than stomatal density and ABA-mediated stomatal closure. Expression of the Arabidopsis thaliana ISOPENTENYL-TRANSFERASE genes involved in the biosynthesis of bioactive CKs and the majority of the Arabidopsis CYTOKININ OXIDASES/DEHYDROGENASES genes was repressed by stress and ABA treatments, leading to a decrease in biologically active CK contents. These results demonstrate a novel mechanism for survival under abiotic stress conditions via the homeostatic regulation of steady state CK levels. Additionally, under normal conditions, although CK deficiency increased the sensitivity of plants to exogenous ABA, it caused a downregulation of key ABA biosynthetic genes, leading to a significant reduction in endogenous ABA levels in CK-deficient plants relative to the wild type. Taken together, this study provides direct evidence that mutual regulation mechanisms exist between the CK and ABA metabolism and signals underlying different processes regulating plant adaptation to stressors as well as plant growth and development.
Trends in Plant Science | 2012
Suk-Bong Ha; Radomira Vankova; Kazuko Yamaguchi-Shinozaki; Kazuo Shinozaki; Lam-Son Phan Tran
In plants, the cytokinin (CK) phytohormones regulate numerous biological processes, including responses to environmental stresses, via a complex network of CK signaling. By an unknown mechanism, stress signals are perceived and transmitted through the His-Asp phosphorelay, an important component of the CK signal transduction pathway, triggering CK-responsive genes. Because of the intensive crosstalk between CKs and abscisic acid (ABA), modulation of CK levels and their signal transduction affects both ABA-dependent and ABA-independent pathways, enabling plant adaptation to adverse conditions. This review presents our current understanding of the functions of CKs and CK signaling in the regulation of plant adaptation to stress. Biotechnological strategies based on the modulation of CK levels have been examined with the aim of stabilizing agriculture yields.
Plant Physiology | 2003
Yeonjin K. Veach; Ruth C. Martin; David W. S. Mok; Jiri Malbeck; Radomira Vankova; Machteld C. Mok
trans-Zeatin is a major and ubiquitous cytokinin in higher plants. cis-Zeatin has traditionally been viewed as an adjunct with low activity and rare occurrence. Recent reports of cis-zeatin and its derivatives as the predominant cytokinin components in some plant tissues may call for a different perspective on cis-isomers. The existence of a maize (Zea mays) gene (cisZOG1) encoding an O-glucosyltransferase specific to cis-zeatin (R.C. Martin, M.C. Mok, J.E. Habben, D.W.S. Mok [2001] Proc Natl Acad Sci USA 98: 5922–5926) lends further support to this view. Results described here include the isolation of a second maize cisZOG gene, differential expression ofcisZOG1 and cisZOG2, and identification of substantial amounts of cis-isomers in maize tissues. The open reading frame of cisZOG2 has 98.3% identity to cisZOG1at the nucleotide level and 97.8% at the amino acid level. The upstream regions contain common and unique segments. The recombinant enzymes have similar properties, K m values of 46 and 96 μm, respectively, for cis-zeatin and a pH optimum of 7.5. Other cytokinins, including N6-(Δ2-isopentenyl)adenine, trans-zeatin, benzyladenine, kinetin, and thidiazuron inhibited the reaction. Expression of cisZOG1 was high in maize roots and kernels, whereas cisZOG2 expression was high in roots but low in kernels. cis-Zeatin, cis-zeatin riboside, and theirO-glucosides were detected in all maize tissues, with immature kernels containing very high levels of theO-glucoside of cis-zeatin riboside. The results are a clear indication that O-glucosylation of cis-zeatin is a natural metabolic process in maize. Whether cis-zeatin serves as a precursor to the active trans-isomer or has any other unique function remains to be demonstrated.
Journal of Plant Physiology | 2010
Jana Dobrá; Václav Motyka; Petre I. Dobrev; Jiri Malbeck; Ilja Tom Prášil; D. Haisel; Alena Gaudinová; Marie Havlová; Jozef Gubis; Radomira Vankova
In order to test the possibility of improving tolerance to heat and drought (alone and in combination) by elevation of the osmoprotectant proline (Pro) content, stress responses were compared in tobacco plants constitutively over-expressing a gene for the Pro biosynthetic enzyme Δ(2)-pyrroline-5-carboxylate synthetase (P5CSF129A; EC 2.7.2.11/1.2.1.41) and in the corresponding wild-type. Significantly enhanced Pro production in the transformant coincided with a more negative leaf osmotic potential (both at control conditions and following stress) and enhanced production of protective xanthophyll cycle pigments. Heat stress (40 °C) caused a transient increase in the level of bioactive cytokinins, predominantly N(6)-(2-isopentenyl)adenosine, accompanied by down-regulation of the activity of the main cytokinin degrading enzyme cytokinin oxidase/dehydrogenase (EC 1.4.3.18/1.5.99.12). No significant differences were found between the tested genotypes. In parallel, a transient decrease of abscisic acid was observed. Following drought stress, bioactive cytokinin levels decreased in the whole plants, remaining relatively higher in preferentially protected upper leaves and in roots. Cytokinin suppression was less pronounced in Pro transformants. Exposure to heat stress (40 °C for 2h) at the end of 10-d drought period strongly enhanced the severity of the water stress, as indicated by a drop in leaf water potential. The activity of cytokinin oxidase/dehydrogenase was strongly stimulated in upper leaves and roots of stressed plants, coinciding with strong down-regulation of bioactive cytokinins in whole plants. Combined heat and drought stress resulted in a minor decrease in abscisic acid, but only in non-wilty upper leaves. Both stresses as well as their combination were associated with elevation of free auxin, indolylacetic acid, in lower leaves and/or in roots. Auxin increase was dependent on the stress strength. After rehydration, a marked elevation of bioactive cytokinins in leaves was observed. A greater increase in cytokinin content in Pro transformants indicated a mild elevation of their stress tolerance.
Journal of Plant Physiology | 2012
Klára Kosová; Ilja Tom Prášil; Pavel Vítámvás; Petre I. Dobrev; Václav Motyka; Kristýna Floková; Ondřej Novák; Veronika Turečková; Jakub Rolčík; Bedřich Pešek; Alena Trávníčková; Alena Gaudinová; Gábor Galiba; Tibor Janda; Eva Vlasáková; Pavla Prášilová; Radomira Vankova
Hormonal changes accompanying the cold stress (4°C) response that are related to the level of frost tolerance (FT; measured as LT50) and the content of the most abundant dehydrin, WCS120, were compared in the leaves and crowns of the winter wheat (Triticum aestivum L.) cv. Samanta and the spring wheat cv. Sandra. The characteristic feature of the alarm phase (1 day) response was a rapid elevation of abscisic acid (ABA) and an increase of protective proteins (dehydrin WCS120). This response was faster and stronger in winter wheat, where it coincided with the downregulation of bioactive cytokinins and auxin as well as enhanced deactivation of gibberellins, indicating rapid suppression of growth. Next, the ethylene precursor aminocyclopropane carboxylic acid was quickly upregulated. After 3-7 days of cold exposure, plant adaptation to the low temperature was correlated with a decrease in ABA and elevation of growth-promoting hormones (cytokinins, auxin and gibberellins). The content of other stress hormones, i.e., salicylic acid and jasmonic acid, also began to increase. After prolonged cold exposure (21 days), a resistance phase occurred. The winter cultivar exhibited substantially enhanced FT, which was associated with a decline in bioactive cytokinins and auxin. The inability of the spring cultivar to further increase its FT was correlated with maintenance of a relatively higher cytokinin and auxin content, which was achieved during the acclimation period.
Journal of Hazardous Materials | 2012
Premysl Landa; Radomira Vankova; Jana Andrlova; Jan Hodek; Petr Marsik; Helena Štorchová; Jason C. White; Tomas Vanek
The effect of exposure to 100 mg/L zinc oxide (nZnO), fullerene soot (FS) or titanium dioxide (nTiO(2)) nanoparticles on gene expression in Arabidopsis thaliana roots was studied using microarrays. After 7d, nZnO, FS, or nTiO(2) exposure resulted in 660 up- and 826 down-regulated genes, 232 up- and 189 down-regulated genes, and 80 up- and 74 down-regulated genes, respectively (expression difference>2-fold; p[t test]<0.05). The genes induced by nZnO and FS include mainly ontology groups annotated as stress responsive, including both abiotic (oxidative, salt, water deprivation) and biotic (wounding and defense to pathogens) stimuli. The down-regulated genes upon nZnO exposure were involved in cell organization and biogenesis, including translation, nucleosome assembly and microtubule based process. FS largely repressed the transcription of genes involved in electron transport and energy pathways. Only mild changes in gene expression were observed upon nTiO(2) exposure, which resulted in up- and down-regulation of genes involved mainly in responses to biotic and abiotic stimuli. The data clearly indicate that the mechanisms of phytotoxicity are highly nanoparticle dependent despite of a limited overlap in gene expression response.
Plant Science | 2013
Gábor Kocsy; Irma Tari; Radomira Vankova; Bernd Zechmann; Zsolt Gulyás; Péter Poór; Gábor Galiba
Redox changes determined by genetic and environmental factors display well-organized interactions in the control of plant growth and development. Diurnal and seasonal changes in the environmental conditions are important for the normal course of these physiological processes and, similarly to their mild irregular alterations, for stress adaptation. However, fast or large-scale environmental changes may lead to damage or death of sensitive plants. The spatial and temporal redox changes influence growth and development due to the reprogramming of metabolism. In this process reactive oxygen and nitrogen species and antioxidants are involved as components of signalling networks. The control of growth, development and flowering by reactive oxygen and nitrogen species and antioxidants in interaction with hormones at organ, tissue, cellular and subcellular level will be discussed in the present review. Unsolved problems of the field, among others the need for identification of new components and interactions in the redox regulatory network at various organization levels using systems biology approaches will be also indicated.
Journal of Experimental Botany | 2013
Hana Macková; Marie Hronková; Jana Dobrá; Veronika Turečková; Ondřej Novák; Zuzana Lubovská; Václav Motyka; D. Haisel; Tomáš Hájek; Ilja Tom Prášil; Alena Gaudinová; Helena Štorchová; Eva Ge; Tomáš Werner; Thomas Schmülling; Radomira Vankova
Responses to drought, heat, and combined stress were compared in tobacco (Nicotiana tabacum L.) plants ectopically expressing the cytokinin oxidase/dehydrogenase CKX1 gene of Arabidopsis thaliana L. under the control of either the predominantly root-expressed WRKY6 promoter or the constitutive 35S promoter, and in the wild type. WRKY6:CKX1 plants exhibited high CKX activity in the roots under control conditions. Under stress, the activity of the WRKY6 promoter was down-regulated and the concomitantly reduced cytokinin degradation coincided with raised bioactive cytokinin levels during the early phase of the stress response, which might contribute to enhanced stress tolerance of this genotype. Constitutive expression of CKX1 resulted in an enlarged root system, a stunted, dwarf shoot phenotype, and a low basal level of expression of the dehydration marker gene ERD10B. The high drought tolerance of this genotype was associated with a relatively moderate drop in leaf water potential and a significant decrease in leaf osmotic potential. Basal expression of the proline biosynthetic gene P5CSA was raised. Both wild-type and WRKY6:CKX1 plants responded to heat stress by transient elevation of stomatal conductance, which correlated with an enhanced abscisic acid catabolism. 35S:CKX1 transgenic plants exhibited a small and delayed stomatal response. Nevertheless, they maintained a lower leaf temperature than the other genotypes. Heat shock applied to drought-stressed plants exaggerated the negative stress effects, probably due to the additional water loss caused by a transient stimulation of transpiration. The results indicate that modulation of cytokinin levels may positively affect plant responses to abiotic stress through a variety of physiological mechanisms.
Journal of Experimental Botany | 2008
Albert Pineda Rodó; Norbert Brugière; Radomira Vankova; Jiri Malbeck; Jaleh M. Olson; Sara C. Haines; Ruth C. Martin; Jeffrey E. Habben; David W. S. Mok; Machteld C. Mok
To study the effects of cytokinin O-glucosylation in monocots, maize (Zea mays L.) transformants harbouring the ZOG1 gene (encoding a zeatin O-glucosyltransferase from Phaseolus lunatus L.) under the control of the constitutive ubiquitin (Ubi) promoter were generated. The roots and leaves of the transformants had greatly increased levels of zeatin-O-glucoside. The vegetative characteristics of hemizygous and homozygous Ubi:ZOG1 plants resembled those of cytokinin-deficient plants, including shorter stature, thinner stems, narrower leaves, smaller meristems, and increased root mass and branching. Transformant leaves had a higher chlorophyll content and increased levels of active cytokinins compared with those of non-transformed sibs. The Ubi:ZOG1 plants exhibited delayed senescence when grown in the spring/summer. While hemizygous transformants had reduced tassels with fewer spikelets and normal viable pollen, homozygotes had very small tassels and feminized tassel florets, resembling tasselseed phenotypes. Such modifications of the reproductive phase were unexpected and demonstrate a link between cytokinins and sex-specific floral development in monocots.
PLOS ONE | 2012
Dung Tien Le; Rie Nishiyama; Yasuko Watanabe; Radomira Vankova; Maho Tanaka; Motoaki Seki; Le Huy Ham; Kazuko Yamaguchi-Shinozaki; Kazuo Shinozaki; Lam-Son Phan Tran
Cytokinins (CKs) mediate cellular responses to drought stress and targeted control of CK metabolism can be used to develop drought-tolerant plants. Aiming to manipulate CK levels to improve drought tolerance of soybean cultivars through genetic engineering of CK metabolic genes, we surveyed the soybean genome and identified 14 CK biosynthetic (isopentenyltransferase, GmIPT) and 17 CK degradative (CK dehydrogenase, GmCKX) genes. Comparative analyses of GmIPTs and GmCKXs with Arabidopsis counterparts revealed their similar architecture. The average numbers of abiotic stress-inducible cis-elements per promoter were 0.4 and 1.2 for GmIPT and GmCKX genes, respectively, suggesting that upregulation of GmCKXs, thereby reduction of CK levels, maybe the major events under abiotic stresses. Indeed, the expression of 12 GmCKX genes was upregulated by dehydration in R2 roots. Overall, the expressions of soybean CK metabolic genes in various tissues at various stages were highly responsive to drought. CK contents in various organs at the reproductive (R2) stage were also determined under well-watered and drought stress conditions. Although tRNA-type GmIPT genes were highly expressed in soybean, cis-zeatin and its derivatives were found at low concentrations. Moreover, reduction of total CK content in R2 leaves under drought was attributable to the decrease in dihydrozeatin levels, suggesting a role of this molecule in regulating soybeans responses to drought stress. Our systematic analysis of the GmIPT and GmCKX families has provided an insight into CK metabolism in soybean under drought stress and a solid foundation for in-depth characterization and future development of improved drought-tolerant soybean cultivars by manipulation of CK levels via biotechnological approach.