Helene Duret
Peter MacCallum Cancer Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helene Duret.
Proceedings of the National Academy of Sciences of the United States of America | 2011
John Stagg; Sherene Loi; Upulie Divisekera; Shin Foong Ngiow; Helene Duret; Hideo Yagita; Michele W.L. Teng; Mark J. Smyth
Trastuzumab, a monoclonal antibody targeting human epidermal growth factor receptor-2 (HER2/ErbB-2), has become the mainstay of treatment for HER2-positive breast cancer. Nevertheless, its exact mechanism of action has not been fully elucidated. Although several studies suggest that Fc receptor-expressing immune cells are involved in trastuzumab therapy, the relative contribution of lymphocyte-mediated cellular cytotoxicity and antitumor cytokines remains unknown. We report here that anti–ErbB-2 mAb therapy is dependent on the release of type I and type II IFNs but is independent of perforin or FasL. Our study thus challenges the notion that classical antibody-dependent, lymphocyte-mediated cellular cytotoxicity is important for trastuzumab. We demonstrate that anti–ErbB-2 mAb therapy of experimental tumors derived from MMTV-ErbB-2 transgenic mice triggers MyD88-dependent signaling and primes IFN-γ–producing CD8+ T cells. Adoptive cell transfer of purified T cell subsets confirmed the essential role of IFN-γ–producing CD8+ T cells. Notably, anti–ErbB-2 mAb therapy was independent of IL-1R or IL-17Ra signaling. Finally, we investigated whether immunostimulatory approaches with antibodies against programmed death-1 (PD-1) or 41BB (CD137) could be used to capitalize on the immune-mediated effects of trastuzumab. We demonstrate that anti–PD-1 or anti-CD137 mAb can significantly improve the therapeutic activity of anti–ErbB-2 mAb in immunocompetent mice.
Cancer Research | 2011
John Stagg; Upulie Divisekera; Helene Duret; Tim Sparwasser; Michele W.L. Teng; Phillip K. Darcy; Mark J. Smyth
CD73 is a cell-surface enzyme that suppresses immune responses by producing extracellular adenosine. In this study, we employed CD73 gene-targeted mice to investigate the role of host-derived CD73 on antitumor immunity and tumor cell metastasis. We found that CD73 ablation significantly suppressed the growth of ovalbumin-expressing MC38 colon cancer, EG7 lymphoma, AT-3 mammary tumors, and B16F10 melanoma. The protective effect of CD73 deficiency on primary tumors was dependent on CD8(+) T cells and associated with an increased frequency of antigen-specific CD8(+) T cells in peripheral blood and tumors and increased antigen-specific IFN-γ production. Replicate studies in bone marrow chimeras established that both hematopoietic and nonhematopoietic expression of CD73 was important to promote tumor immune escape. Using adoptive reconstitution of T regulatory cell (Treg)-depleted DEREG (depletion of regulatory T cells) mice, we demonstrated that part of the protumorigenic effect of Tregs was dependent on their expression of CD73. CD73-deficient mice were also protected against pulmonary metastasis of B16F10 melanoma cells after intravenous injection. Unexpectedly, we found that the prometastatic effect of host-derived CD73 was dependent on CD73 expression on nonhematopoietic cells. CD73 expression on nonhematopoietic cells, most likely endothelial cells, was critical for promoting lung metastasis in a manner independent from immunosuppressive effects. Notably, in vivo blockade of CD73 with a selective inhibitor or anti-CD73 monoclonal antibody significantly reduced tumor growth and metastasis of CD73-negative tumors. Taken together, our findings indicate that CD73 may be targeted at multiple levels to induce anticancer effects including at the level of tumor cells, Tregs, and nonhematopoietic cells.
Cancer Research | 2011
Stephen R. Mattarollo; Sherene Loi; Helene Duret; Yuting Ma; Laurence Zitvogel; Mark J. Smyth
We show, in a series of established experimental breast adenocarcinomas and fibrosarcomas induced by carcinogen de novo in mice, that the therapeutic efficacy of doxorubicin treatment is dependent on CD8 T cells and IFN-γ production. Doxorubicin treatment enhances tumor antigen-specific proliferation of CD8 T cells in tumor-draining lymph nodes and promotes tumor infiltration of activated, IFN-γ-producing CD8 T cells. Optimal doxorubicin treatment outcome also requires both interleukin (IL)-1β and IL-17 cytokines, as blockade of IL-1β/IL-1R or IL-17A/IL-17Rα signaling abrogated the therapeutic effect. IL-23p19 had no observed role. The presence of γδ T cells, but not Jα18(+) natural killer T cells, at the time of doxorubicin treatment was also important. In tumor samples taken from breast cancer patients prior to treatment with anthracycline chemotherapy, a correlation between CD8α, CD8β, and IFN-γ gene expression levels and clinical response was observed, supporting their role in the therapeutic efficacy of anthracyclines in humans. Overall, these data strongly support the pivotal contribution of both innate and adaptive immunity in treatment outcomes of anthracycline chemotherapy.
Cancer Research | 2012
Inge Verbrugge; Jim Hagekyriakou; Leslie L. Sharp; Mara Galli; Alison C. West; Nicole McLaughlin; Helene Duret; Hideo Yagita; Ricky W. Johnstone; Mark J. Smyth; Nicole M. Haynes
It is becoming increasingly evident that radiotherapy may benefit from coincident or subsequent immunotherapy. In this study, we examined whether the antitumor effects of radiotherapy, in established triple-negative breast tumors could be enhanced with combinations of clinically relevant monoclonal antibodies (mAb), designed to stimulate immunity [anti-(α)-CD137, α-CD40] or relieve immunosuppression [α-programmed death (PD)-1]. While the concomitant targeting of the costimulatory molecules CD137 and CD40 enhanced the antitumor effects of radiotherapy and promoted the rejection of subcutaneous BALB/c-derived 4T1.2 tumors, this novel combination was noncurative in mice bearing established C57BL/6-derived AT-3 tumors. We identified PD-1 signaling within the AT-3 tumors as a critical limiting factor to the therapeutic efficacy of α-CD137 therapy, alone and in combination with radiotherapy. Strikingly, all mice bearing established orthotopic AT-3 mammary tumors were cured when α-CD137 and α-PD-1 mAbs were combined with single- or low-dose fractionated radiotherapy. CD8+ T cells were essential for curative responses to this combinatorial regime. Interestingly, CD137 expression on tumor-associated CD8+ T cells was largely restricted to a subset that highly expressed PD-1. These CD137+PD-1High CD8+ T cells, persisted in irradiated AT-3 tumors, expressed Tim-3, granzyme B and Ki67 and produced IFN-γ ex vivo in response to phorbol 12-myristate 13-acetate (PMA) and ionomycin stimulation. Notably, radiotherapy did not deplete, but enriched tumors of functionally active, tumor-specific effector cells. Collectively, these data show that concomitant targeting of immunostimulatory and inhibitory checkpoints with immunomodulatory mAbs can enhance the curative capacity of radiotherapy in established breast malignancy.
Cancer Research | 2014
Yuting Ma; Stephen R. Mattarollo; Sandy Adjemian; Heng Yang; Laetitia Aymeric; Dalil Hannani; João Paulo Portela Catani; Helene Duret; Michele W.L. Teng; Oliver Kepp; Yidan Wang; Antonella Sistigu; Joachim L. Schultze; Gautier Stoll; Lorenzo Galluzzi; Laurence Zitvogel; Mark J. Smyth; Guido Kroemer
The therapeutic efficacy of anthracyclines relies, at least partially, on the induction of a dendritic cell- and T-lymphocyte-dependent anticancer immune response. Here, we show that anthracycline-based chemotherapy promotes the recruitment of functional CD11b(+)CD11c(+)Ly6C(high)Ly6G(-)MHCII(+) dendritic cell-like antigen-presenting cells (APC) into the tumor bed, but not into lymphoid organs. Accordingly, draining lymph nodes turned out to be dispensable for the proliferation of tumor antigen-specific T cells within neoplastic lesions as induced by anthracyclines. In addition, we found that tumors treated with anthracyclines manifest increased expression levels of the chemokine Ccl2. Such a response is important as neoplasms growing in Ccl2(-/-) mice failed to accumulate dendritic cell-like APCs in response to chemotherapy. Moreover, cancers developing in mice lacking Ccl2 or its receptor (Ccr2) exhibited suboptimal therapeutic responses to anthracycline-based chemotherapy. Altogether, our results underscore the importance of the CCL2/CCR2 signaling axis for therapeutic anticancer immune responses as elicited by immunogenic chemotherapy.
Cancer Research | 2012
Melvyn T. Chow; Jaclyn Sceneay; Christophe Paget; Christina S.F. Wong; Helene Duret; Jürg Tschopp; Andreas Möller; Mark J. Smyth
The NLRP3 inflammasome acts as a danger signal sensor that triggers and coordinates the inflammatory response upon infectious insults or tissue injury and damage. However, the role of the NLRP3 inflammasome in natural killer (NK) cell-mediated control of tumor immunity is poorly understood. Here, we show in a model of chemical-induced carcinogenesis and a series of experimental and spontaneous metastases models that mice lacking NLRP3 display significantly reduced tumor burden than control wild-type (WT) mice. The suppression of spontaneous and experimental tumor metastases and methylcholanthrene (MCA)-induced sarcomas in mice deficient for NLRP3 was NK cell and IFN-γ-dependent. Focusing on the amenable B16F10 experimental lung metastases model, we determined that expression of NLRP3 in bone marrow-derived cells was necessary for optimal tumor metastasis. Tumor-driven expansion of CD11b(+)Gr-1(intermediate) (Gr-1(int)) myeloid cells within the lung tumor microenvironment of NLRP3(-/-) mice was coincident with increased lung infiltrating activated NK cells and an enhanced antimetastatic response. The CD11b(+)Gr-1(int) myeloid cells displayed a unique cell surface phenotype and were characterized by their elevated production of CCL5 and CXCL9 chemokines. Adoptive transfer of this population into WT mice enhanced NK cell numbers in, and suppression of, B16F10 lung metastases. Together, these data suggested that NLRP3 is an important suppressor of NK cell-mediated control of carcinogenesis and metastases and identify CD11b(+)Gr-1(int) myeloid cells that promote NK cell antimetastatic function.
Cancer Research | 2012
Michele W.L. Teng; Matthew D. Vesely; Helene Duret; Nicole McLaughlin; Jennifer E. Towne; Robert D. Schreiber; Mark J. Smyth
Cancer immunoediting, the process by which the immune system controls tumor growth and shapes tumor immunogenicity, consists of 3 stages: elimination, equilibrium, and escape. The molecular mechanisms that underlie the equilibrium phase, during which the immune system maintains tumor dormancy, remain incompletely defined. Here, we investigated the length of the equilibrium phase during immune control of methylcholanthrene (MCA)-induced or p53 mutant cancers and showed the critical and opposing roles of interleukin (IL)-23 and IL-12 in maintaining cancer cells in a state of immune-mediated dormancy. Inhibition of IL-23p19 was shown to reduce the malignant potential of lesions established by MCA inoculation, whereas inhibition of IL-12/23p40 enhanced tumor outgrowth. Furthermore, agonistic anti-CD40 antibody treatment mimicked the effects of anti-IL-23p19 monoclonal antibody treatment. Other cytokines such as IL-4, IL-17, TNF, and IFNαβ, which are known to play important roles either in MCA tumorigenesis or in the elimination phase of cancer immunoediting, did not play critical roles in maintaining the equilibrium phase. Taken together, our findings show opposing roles for IL-23 and IL-12 in determining the outgrowth versus dormancy of occult neoplasia and suggest a potential long-term danger in using IL-12/23p40 antibodies for treating human autoimmune inflammatory disorders.
Nature Cell Biology | 2013
Annamaria Biroccio; Julien Cherfils-Vicini; Adeline Augereau; Sébastien Pinte; Serge Bauwens; Jing Ye; Thomas Simonet; Béatrice Horard; Karine Jamet; Ludovic Cervera; Aaron Mendez-Bermudez; Delphine Poncet; Renée Grataroli; Claire T Kint De Rodenbeeke; Erica Salvati; Angela Rizzo; Pasquale Zizza; Michelle Ricoul; Céline Cognet; Thomas Kuilman; Helene Duret; Florian Lepinasse; Jacqueline Marvel; Els Verhoeyen; François-Loïc Cosset; Daniel S. Peeper; Mark J. Smyth; Arturo Londoño-Vallejo; Laure Sabatier; Vincent Picco
Dysfunctional telomeres suppress tumour progression by activating cell-intrinsic programs that lead to growth arrest. Increased levels of TRF2, a key factor in telomere protection, are observed in various human malignancies and contribute to oncogenesis. We demonstrate here that a high level of TRF2 in tumour cells decreased their ability to recruit and activate natural killer (NK) cells. Conversely, a reduced dose of TRF2 enabled tumour cells to be more easily eliminated by NK cells. Consistent with these results, a progressive upregulation of TRF2 correlated with decreased NK cell density during the early development of human colon cancer. By screening for TRF2-bound genes, we found that HS3ST4—a gene encoding for the heparan sulphate (glucosamine) 3-O-sulphotransferase 4—was regulated by TRF2 and inhibited the recruitment of NK cells in an epistatic relationship with TRF2. Overall, these results reveal a TRF2-dependent pathway that is tumour-cell extrinsic and regulates NK cell immunity.
Blood | 2012
Stephen R. Mattarollo; Alison C. West; Kim Steegh; Helene Duret; Christophe Paget; Ben P. Martin; Geoffrey M. Matthews; Jake Shortt; Marta Chesi; P. Leif Bergsagel; Michael Bots; Johannes Zuber; Scott W. Lowe; Ricky W. Johnstone; Mark J. Smyth
Immunomodulators are effective in controlling hematologic malignancy by initiating or reactivating host antitumor immunity to otherwise poorly immunogenic and immune suppressive cancers. We aimed to boost antitumor immunity in B-cell lymphoma by developing a tumor cell vaccine incorporating α-galactosylceramide (α-GalCer) that targets the immune adjuvant properties of NKT cells. In the Eμ-myc transgenic mouse model, single therapeutic vaccination of irradiated, α-GalCer-loaded autologous tumor cells was sufficient to significantly inhibit growth of established tumors and prolong survival. Vaccine-induced antilymphoma immunity required NKT cells, NK cells, and CD8 T cells, and early IL-12-dependent production of IFN-γ. CD4 T cells, gamma/delta T cells, and IL-18 were not critical. Vaccine treatment induced a large systemic spike of IFN-γ and transient peripheral expansion of both NKT cells and NK cells, the major sources of IFN-γ. Furthermore, this vaccine approach was assessed in several other hematopoietic tumor models and was also therapeutically effective against AML-ETO9a acute myeloid leukemia. Replacing α-GalCer with β-mannosylceramide resulted in prolonged protection against Eμ-myc lymphoma. Overall, our results demonstrate a potent immune adjuvant effect of NKT cell ligands in therapeutic anticancer vaccination against oncogene-driven lymphomas, and this work supports clinical investigation of NKT cell-based immunotherapy in patients with hematologic malignancies.
Immunology and Cell Biology | 2013
Stephen R. Mattarollo; Kim Steegh; Ming Li; Helene Duret; Shin Foong Ngiow; Mark J. Smyth
The natural killer T (NKT) cell ligand, alpha‐galactosylceramide (α‐GalCer), represents a potential adjuvant to boost immunotherapeutic vaccination strategies against poorly immunogenic cancers. The objective of this study was to assess the therapeutic potential of an α‐GalCer‐loaded tumor‐cell vaccine against solid tumors in mice and to enhance the effectiveness of this approach by removing immune suppression associated with the activity of Foxp3+ regulatory T cells (Tregs). In the B16F10 melanoma model, we show that single vaccination with irradiated, α‐GalCer‐loaded tumor cells resulted in suppression of established subcutaneous (s.c.) B16F10 tumor growth, which was mediated by NKT cell‐dependent IFN‐γ production and enhanced in the absence of IL‐17 A. Selective depletion of Foxp3+ Tregs in transgenic DEpletion of REGulatory T cells (DEREG) mice led to significant inhibition of B16F10 tumor growth and enhanced survival of mice receiving vaccination. Short‐term elimination of Foxp3+ Tregs (<7 days) was sufficient to boost vaccine‐induced immunity. Enhanced antitumor activity with combination therapy was associated with an increase in systemic NK cell and effector CD8+ T‐cell activation and IFN‐γ production, as well as infiltration of effector CD8+ T cells into the tumor. Overall, these findings demonstrate that transient depletion of Foxp3+ Tregs constitutes a highly effective strategy to improve the therapeutic efficacy of anticancer vaccination with NKT cell adjuvants.