Melvyn T. Chow
Peter MacCallum Cancer Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Melvyn T. Chow.
Clinical Cancer Research | 2013
Liza B. John; Christel Devaud; Connie P M Duong; Carmen S M Yong; Paul A. Beavis; Nicole M. Haynes; Melvyn T. Chow; Mark J. Smyth; Michael H. Kershaw; Phillip K. Darcy
Purpose: To determine the antitumor efficacy and toxicity of a novel combination approach involving adoptive T-cell immunotherapy using chimeric antigen receptor (CAR) T cells with an immunomodulatory reagent for blocking immunosuppression. Experimental Design: We examined whether administration of a PD-1 blocking antibody could increase the therapeutic activity of CAR T cells against two different Her-2+ tumors. The use of a self-antigen mouse model enabled investigation into the efficacy, mechanism, and toxicity of this combination approach. Results: In this study, we first showed a significant increase in the level of PD-1 expressed on transduced anti-Her-2 CD8+ T cells following antigen-specific stimulation with PD-L1+ tumor cells and that markers of activation and proliferation were increased in anti-Her-2 T cells in the presence of anti-PD-1 antibody. In adoptive transfer studies in Her-2 transgenic recipient mice, we showed a significant improvement in growth inhibition of two different Her-2+ tumors treated with anti-Her-2 T cells in combination with anti-PD-1 antibody. The therapeutic effects observed correlated with increased function of anti-Her-2 T cells following PD-1 blockade. Strikingly, a significant decrease in the percentage of Gr1+ CD11b+ myeloid-derived suppressor cells (MDSC) was observed in the tumor microenvironment of mice treated with the combination therapy. Importantly, increased antitumor effects were not associated with any autoimmune pathology in normal tissue expressing Her-2 antigen. Conclusion: This study shows that specifically blocking PD-1 immunosuppression can potently enhance CAR T-cell therapy that has significant implications for potentially improving therapeutic outcomes of this approach in patients with cancer. Clin Cancer Res; 19(20); 5636–46. ©2013 AACR.
Cancer Research | 2012
Jaclyn Sceneay; Melvyn T. Chow; Anna Chen; Heloise Halse; Christina S.F. Wong; Daniel M. Andrews; Erica K. Sloan; Belinda S. Parker; David Bowtell; Mark J. Smyth; Andreas Möller
Hypoxia within a tumor acts as a strong selective pressure that promotes angiogenesis, invasion, and metastatic spread. In this study, we used immune competent bone marrow chimeric mice and syngeneic orthotopic mammary cancer models to show that hypoxia in the primary tumor promotes premetastatic niche formation in secondary organs. Injection of mice with cell-free conditioned medium derived from hypoxic mammary tumor cells resulted in increased bone marrow-derived cell infiltration into the lung in the absence of a primary tumor and led to increased metastatic burden in mammary and melanoma experimental metastasis models. By characterizing the composition of infiltrating bone marrow-derived cells, we identified CD11b+/Ly6Cmed/Ly6G+ myeloid and CD3-/NK1.1+ immune cell lineages as key constituents of the premetastatic niche. Furthermore, the cytotoxicity of natural killer (NK) cells was significantly decreased, resulting in a reduced antitumor response that allowed metastasis formation in secondary organs to a similar extent as ablation of NK cells. In contrast, metastatic burden was decreased when active NK cells were present in premetastatic lungs. Together, our findings suggest that primary tumor hypoxia provides cytokines and growth factors capable of creating a premetastatic niche through recruitment of CD11b+/Ly6Cmed/Ly6G+ myeloid cells and a reduction in the cytotoxic effector functions of NK cell populations.
Nature Immunology | 2014
Christopher J. Chan; Ludovic Martinet; Susan Gilfillan; Fernando Souza-Fonseca-Guimaraes; Melvyn T. Chow; Liam Town; David Ritchie; Marco Colonna; Daniel M. Andrews; Mark J. Smyth
CD96, CD226 (DNAM-1) and TIGIT belong to an emerging family of receptors that interact with nectin and nectin-like proteins. CD226 activates natural killer (NK) cell–mediated cytotoxicity, whereas TIGIT reportedly counterbalances CD226. In contrast, the role of CD96, which shares the ligand CD155 with CD226 and TIGIT, has remained unclear. In this study we found that CD96 competed with CD226 for CD155 binding and limited NK cell function by direct inhibition. As a result, Cd96−/− mice displayed hyperinflammatory responses to the bacterial product lipopolysaccharide (LPS) and resistance to carcinogenesis and experimental lung metastases. Our data provide the first description, to our knowledge, of the ability of CD96 to negatively control cytokine responses by NK cells. Blocking CD96 may have applications in pathologies in which NK cells are important.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Paul A. Beavis; Upulie Divisekera; Christophe Paget; Melvyn T. Chow; Liza B. John; Christel Devaud; Karen M. Dwyer; John Stagg; Mark J. Smyth; Phillip K. Darcy
CD73 inhibits antitumor immunity through the activation of adenosine receptors expressed on multiple immune subsets. CD73 also enhances tumor metastasis, although the nature of the immune subsets and adenosine receptor subtypes involved in this process are largely unknown. In this study, we revealed that A2A/A2B receptor antagonists were effective in reducing the metastasis of tumors expressing CD73 endogenously (4T1.2 breast tumors) and when CD73 was ectopically expressed (B16F10 melanoma). A2A−/− mice were strongly protected against tumor metastasis, indicating that host A2A receptors enhanced tumor metastasis. A2A blockade enhanced natural killer (NK) cell maturation and cytotoxic function in vitro, reduced metastasis in a perforin-dependent manner, and enhanced NK cell expression of granzyme B in vivo, strongly suggesting that the antimetastatic effect of A2A blockade was due to enhanced NK cell function. Interestingly, A2B blockade had no effect on NK cell cytotoxicity, indicating that an NK cell-independent mechanism also contributed to the increased metastasis of CD73+ tumors. Our results thus revealed that CD73 promotes tumor metastasis through multiple mechanisms, including suppression of NK cell function. Furthermore, our data strongly suggest that A2A or A2B antagonists may be useful for the treatment of metastatic disease. Overall, our study has potential therapeutic implications given that A2A/A2B receptor antagonists have already entered clinical trials in other therapeutic settings.
Seminars in Cancer Biology | 2012
Melvyn T. Chow; Andreas Möller; Mark J. Smyth
Chronic inflammation is a risk factor for tumor development. However, understanding the effect of the immune system on tumor development has only been significantly advanced over the past two decades. We now appreciate that the immune system, in addition to tumor-suppressive function by eliminating nascent transformed tumor cells, can also exert selection pressure on tumor cells and facilitate tumor growth by providing a favorable tumor microenvironment. Yet, the distinctions between tumor-promoting inflammation and tumor-suppressive immunity are still not clear due to the dual role of some cytokines and other molecules in the immune system. The danger signal hypothesis has shaped our view of the role of immunity in cancer development, but still little is known about the exact role of danger signal receptors in cancer progression. In this review, we introduce the processes of cancer immunoediting and inflammation-induced cancer and discuss what is currently known about the role of danger signal receptors in cancer development and progression.
Cancer immunology research | 2014
Melvyn T. Chow; Andrew D. Luster
Chemokines are chemotactic cytokines that control the migration of cells between tissues and the positioning and interactions of cells within tissue. The chemokine superfamily consists of approximately 50 endogenous chemokine ligands and 20 G protein–coupled seven-transmembrane spanning signaling receptors. Chemokines mediate the host response to cancer by directing the trafficking of leukocytes into the tumor microenvironment. This migratory response is complex and consists of diverse leukocyte subsets with both antitumor and protumor activities. Although chemokines were initially appreciated as important mediators of immune cell migration, we now know that they also play important roles in the biology of nonimmune cells important for tumor growth and progression. Chemokines can directly modulate the growth of tumors by inducing the proliferation of cancer cells and preventing their apoptosis. They also direct tumor cell movement required for metastasis. Chemokines can also indirectly modulate tumor growth through their effects on tumor stromal cells and by inducing the release of growth and angiogenic factors from cells in the tumor microenvironment. In this Masters of Immunology primer, we focus on recent advances in understanding the complex nature of the chemokine system in tumor biology with a focus on how the chemokine system could be used to augment cancer immunotherapeutic strategies to elicit a more robust and long-lasting host antitumor immune response. Cancer Immunol Res; 2(12); 1125–31. ©2014 AACR.
Cancer Research | 2012
Melvyn T. Chow; Jaclyn Sceneay; Christophe Paget; Christina S.F. Wong; Helene Duret; Jürg Tschopp; Andreas Möller; Mark J. Smyth
The NLRP3 inflammasome acts as a danger signal sensor that triggers and coordinates the inflammatory response upon infectious insults or tissue injury and damage. However, the role of the NLRP3 inflammasome in natural killer (NK) cell-mediated control of tumor immunity is poorly understood. Here, we show in a model of chemical-induced carcinogenesis and a series of experimental and spontaneous metastases models that mice lacking NLRP3 display significantly reduced tumor burden than control wild-type (WT) mice. The suppression of spontaneous and experimental tumor metastases and methylcholanthrene (MCA)-induced sarcomas in mice deficient for NLRP3 was NK cell and IFN-γ-dependent. Focusing on the amenable B16F10 experimental lung metastases model, we determined that expression of NLRP3 in bone marrow-derived cells was necessary for optimal tumor metastasis. Tumor-driven expansion of CD11b(+)Gr-1(intermediate) (Gr-1(int)) myeloid cells within the lung tumor microenvironment of NLRP3(-/-) mice was coincident with increased lung infiltrating activated NK cells and an enhanced antimetastatic response. The CD11b(+)Gr-1(int) myeloid cells displayed a unique cell surface phenotype and were characterized by their elevated production of CCL5 and CXCL9 chemokines. Adoptive transfer of this population into WT mice enhanced NK cell numbers in, and suppression of, B16F10 lung metastases. Together, these data suggested that NLRP3 is an important suppressor of NK cell-mediated control of carcinogenesis and metastases and identify CD11b(+)Gr-1(int) myeloid cells that promote NK cell antimetastatic function.
Journal of Immunology | 2010
Desiree A. Anthony; Daniel M. Andrews; Melvyn T. Chow; Sally V. Watt; Colin M. House; S. Akira; Phillip I. Bird; Joseph A. Trapani; Mark J. Smyth
Lymphocyte perforin and serine protease granzymes are well-recognized extrinsic mediators of apoptosis. We now demonstrate that cytotoxic lymphocyte granule components profoundly augment the myeloid cell inflammatory cytokine cascade in response to TLR4 ligation. Whereas caspase-1–deficient mice were completely resistant to LPS, reduced serum cytokine production and resistance to lethal endotoxicosis were also obtained with perforin-deficient mice, indicating a role for granzymes. Consistently, a lack of granzyme M (GrzM) resulted in reduced serum IL-1α, IL-1β, TNF, and IFN-γ levels and significantly reduced susceptibility to lethal endotoxicosis. These altered responses were also observed in granzyme A-deficient but not granzyme B-deficient mice. A role for APC–NK cell cross-talk in the inflammatory cascade was highlighted, as GrzM was exclusively expressed by NK cells and resistance to LPS was also observed on a RAG-1/GrzM-double deficient background. Collectively, the data suggest that NK cell GrzM augments the inflammatory cascade downstream of LPS-TLR4 signaling, which ultimately results in lethal endotoxicosis. Most importantly, these data demonstrate that granzymes should no longer be considered solely as mediators of apoptosis, but additionally as potential key regulators of inflammation.
Immunology and Cell Biology | 2012
Melvyn T. Chow; Jürg Tschopp; Andreas Möller; Mark J. Smyth
Asbestos exposure can result in serious and frequently lethal diseases, including malignant mesothelioma. The host sensor for asbestos‐induced inflammation is the NLRP3 inflammasome and it is widely assumed that this complex is essential for asbestos‐induced cancers. Here, we report that acute interleukin‐1β production and recruitment of immune cells into peritoneal cavity were significantly decreased in the NLRP3‐deficient mice after the administration of asbestos. However, NLRP3‐deficient mice displayed a similar incidence of malignant mesothelioma and survival times as wild‐type mice. Thus, early inflammatory reactions triggered by asbestos are NLRP3‐dependent, but NLRP3 is not critical in the chronic development of asbestos‐induced mesothelioma. Notably, in a two‐stage carcinogenesis‐induced papilloma model, NLRP3‐deficient mice showed a resistance phenotype in two different strain backgrounds, suggesting a tumour‐promoting role of NLRP3 in certain chemically‐induced cancer types.
Journal of Immunology | 2012
Christophe Paget; Melvyn T. Chow; Helene Duret; Stephen R. Mattarollo; Mark J. Smyth
Attempts to harness mouse type I NKT cells in different therapeutic settings including cancer, infection, and autoimmunity have proven fruitful using the CD1d-binding glycolipid α-galactosylceramide (α-GalCer). In these different models, the effects of α-GalCer mainly relied on the establishment of a type I NKT cell-dependent immune cascade involving dendritic cell, NK cell, B cell, or conventional CD4+ and CD8+ T cell activation/regulation as well as immunomodulatory cytokine production. In this study, we showed that γδ T cells, another population of innate-like T lymphocytes, displayed a phenotype of activated cells (cytokine production and cytotoxic properties) and were required to achieve an optimal α-GalCer–induced immune response. Using gene-targeted mice and recombinant cytokines, a critical need for IL-12 and IL-18 has been shown in the α-GalCer–induced IFN-γ production by γδ T cells. Moreover, this cytokine production occurred downstream of type I NKT cell response, suggesting their bystander effect on γδ T cells. In line with this, γδ T cells failed to directly recognize the CD1d/α-GalCer complex. We also provided evidence that γδ T cells increase their cytotoxic properties after α-GalCer injection, resulting in an increase in killing of tumor cell targets. Moreover, using cancer models, we demonstrated that γδ T cells were required for an optimal α-GalCer–mediated anti-tumor activity. Finally, we reported that immunization of wild-type mice with α-GalCer enhanced the adaptive immune response elicited by OVA, and this effect was strongly mediated by γδ T cells. We conclude that γδ T cells amplify the innate and acquired response to α-GalCer, with possibly important outcomes for the therapeutic effects of this compound.