Hélène Gaillard
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hélène Gaillard.
Nature Reviews Cancer | 2015
Hélène Gaillard; Tatiana García-Muse; Andrés Aguilera
Genome instability is a hallmark of cancer, and DNA replication is the most vulnerable cellular process that can lead to it. Any condition leading to high levels of DNA damage will result in replication stress, which is a source of genome instability and a feature of pre-cancerous and cancerous cells. Therefore, understanding the molecular basis of replication stress is crucial to the understanding of tumorigenesis. Although a negative aspect of replication stress is its prominent role in tumorigenesis, a positive aspect is that it provides a potential target for cancer therapy. In this Review, we discuss the link between persistent replication stress and tumorigenesis, with the goal of shedding light on the mechanisms underlying the initiation of an oncogenic process, which should open up new possibilities for cancer diagnostics and treatment.
Molecular Brain Research | 1999
Pari Malherbe; J. Grayson Richards; Hélène Gaillard; Annick Thompson; Catherine Diener; Angelika Schuler; Gerda Huber
The receptor for advanced glycation end products (RAGE) has been proposed as a cell surface receptor that binds amyloid-beta protein (Abeta), thereby triggering its cytotoxic effects [S.D. Yan, X. Chen, J. Fu, M. Chen, H. Zhu, A. Roher, T. Slattery, L. Zhao, M. Nagashima, J. Morser, A. Migheli, P. Nawroth, D. Stern, A.M. Schmidt, RAGE and amyloid-beta peptide neurotoxicity in Alzheimers disease, Nature 382 (1996) 685-691.]. A cDNA library of human lung was screened for RAGE with an appropriate hybridization probe. In addition to cell surface RAGE, one clone was found which encodes a new version of RAGE, termed hRAGEsec, which lacks the 19 amino acids of the membrane-spanning region and is therefore secreted. Comparison with the genomic sequence revealed that the synthesis of the secreted isoform requires alternative splicing. The deduced protein sequence of the mature hRAGEsec consists of 321 amino acids with a predicted molecular mass of 35.66 kDa. The pattern of expression of hRAGEsec in human brain was analyzed by in situ hybridization histochemistry. The most intense expression of the gene in contrast to cell surface RAGE was detected in hippocampal CA3 pyramidal cells, dentate gyrus granule cells, cortical neurons as well as glial cells in white matter. To investigate the interaction between Abeta and RAGE and another scavenger receptor, SRA, under physiological conditions, they were co-expressed with human betaAPP(695)-SFAD in a human cell and the level of Abeta in the condition medium was assessed by immunoprecipitation and enzyme-linked immunosorbent assay (ELISA) analysis. A nearly 100% reduction of Abeta from the conditioned medium of hRAGE cells and approximately 40% reduction from the SRA-cells implied that hRAGE could be a prominent cell surface receptor interacting with Abeta.
The EMBO Journal | 2011
Belén Gómez-González; María L. García-Rubio; Rodrigo Bermejo; Hélène Gaillard; Katsuhiko Shirahige; Antonio Marín; Marco Foiani; Andrés Aguilera
THO/TREX is a conserved nuclear complex that functions in mRNP biogenesis and prevents transcription‐associated recombination. Whether or not it has a ubiquitous role in the genome is unknown. Chromatin immunoprecipitation (ChIP)‐chip studies reveal that the Hpr1 component of THO and the Sub2 RNA‐dependent ATPase have genome‐wide distributions at active ORFs in yeast. In contrast to RNA polymerase II, evenly distributed from promoter to termination regions, THO and Sub2 are absent at promoters and distributed in a gradual 5′ → 3′ gradient. This is accompanied by a genome‐wide impact of THO–Sub2 deletions on expression of highly expressed, long and high G+C‐content genes. Importantly, ChIP‐chips reveal an over‐recruitment of Rrm3 in active genes in THO mutants that is reduced by RNaseH1 overexpression. Our work establishes a genome‐wide function for THO–Sub2 in transcription elongation and mRNP biogenesis that function to prevent the accumulation of transcription‐mediated replication obstacles, including R‐loops.
Chromosoma | 2008
Rosa Luna; Hélène Gaillard; Cristina González-Aguilera; Andrés Aguilera
Transcription is a central function occurring in the nucleus of eukaryotic cells in coordination with other nuclear processes. During transcription, the nascent pre-mRNA associates with mRNA-binding proteins and undergoes a series of processing steps, resulting in export-competent mRNA ribonucleoprotein complexes (mRNPs) that are transported into the cytoplasm. Experimental evidence increasingly indicates that the different processing steps (5′-end capping, splicing, 3′-end cleavage) and mRNP export are connected to each other as well as to transcription, both functionally and physically. Here, we review the overall process of mRNP biogenesis with particular emphasis on the functional coupling of transcription with mRNP biogenesis and export and its relationship to nuclear organization.
Journal of Biological Chemistry | 2003
Hélène Gaillard; Daniel J. Fitzgerald; Corey Smith; Craig L. Peterson; Timothy Richmond; Fritz Thoma
Nucleosomes inhibit DNA repair in vitro, suggesting that chromatin remodeling activities might be required for efficient repair in vivo. To investigate how structural and dynamic properties of nucleosomes affect damage recognition and processing, we investigated repair of UV lesions by photolyase on a nucleosome positioned at one end of a 226-bp-long DNA fragment. Repair was slow in the nucleosome but efficient outside. No disruption or movement of the nucleosome was observed after UV irradiation and during repair. However, incubation with the nucleosome remodeling complex SWI/SNF and ATP altered the conformation of nucleosomal DNA as judged by UV photo-footprinting and promoted more homogeneous repair. Incubation with yISW2 and ATP moved the nucleosome to a more central position, thereby altering the repair pattern. This is the first demonstration that two different chromatin remodeling complexes can act on UV-damaged nucleosomes and modulate repair. Similar activities might relieve the inhibitory effect of nucleosomes on DNA repair processes in living cells.
PLOS Genetics | 2009
Hélène Gaillard; Cristina Tous; Javier Botet; Cristina González-Aguilera; María José Quintero; Laia Viladevall; María L. García-Rubio; Alfonso Rodríguez-Gil; Antonio Marín; Joaquín Ariño; José L. Revuelta; Sebastián Chávez; Andrés Aguilera
RNA polymerases frequently deal with a number of obstacles during transcription elongation that need to be removed for transcription resumption. One important type of hindrance consists of DNA lesions, which are removed by transcription-coupled repair (TC-NER), a specific sub-pathway of nucleotide excision repair. To improve our knowledge of transcription elongation and its coupling to TC-NER, we used the yeast library of non-essential knock-out mutations to screen for genes conferring resistance to the transcription-elongation inhibitor mycophenolic acid and the DNA-damaging agent 4-nitroquinoline-N-oxide. Our data provide evidence that subunits of the SAGA and Ccr4-Not complexes, Mediator, Bre1, Bur2, and Fun12 affect transcription elongation to different extents. Given the dependency of TC-NER on RNA Polymerase II transcription and the fact that the few proteins known to be involved in TC-NER are related to transcription, we performed an in-depth TC-NER analysis of a selection of mutants. We found that mutants of the PAF and Ccr4-Not complexes are impaired in TC-NER. This study provides evidence that PAF and Ccr4-Not are required for efficient TC-NER in yeast, unraveling a novel function for these transcription complexes and opening new perspectives for the understanding of TC-NER and its functional interconnection with transcription elongation.
The EMBO Journal | 2004
Daniel J. Fitzgerald; Carl DeLuca; Imre Berger; Hélène Gaillard; Raphael Sigrist; Kyoko Schimmele; Timothy J. Richmond
Members of the ISWI family of chromatin remodeling factors hydrolyze ATP to reposition nucleosomes along DNA. Here we show that the yeast Isw2 complex interacts with DNA in a nucleotide‐dependent manner at physiological ionic strength. Isw2 efficiently binds DNA in the absence of nucleotides and in the presence of a nonhydrolyzable ATP analog. Conversely, ADP promotes the dissociation of Isw2 from DNA. In contrast, Isw2 remains bound to mononucleosomes through multiple cycles of ATP hydrolysis. Solution studies show that Isw2 undergoes nucleotide‐dependent alterations in conformation not requiring ATP hydrolysis. Our results indicate that during an Isw2 remodeling reaction, hydrolysis of successive ATP molecules coincides with cycles of DNA binding, release, and rebinding involving elements of Isw2 distinct from those interacting with nucleosomes. We propose that progression of the DNA‐binding site occurs while nucleosome core contacts are maintained and generates a force dissipated by disruption of histone–DNA interactions.
Annual Review of Biochemistry | 2016
Hélène Gaillard; Andrés Aguilera
Genomes undergo different types of sporadic alterations, including DNA damage, point mutations, and genome rearrangements, that constitute the basis for evolution. However, these changes may occur at high levels as a result of cell pathology and trigger genome instability, a hallmark of cancer and a number of genetic diseases. In the last two decades, evidence has accumulated that transcription constitutes an important natural source of DNA metabolic errors that can compromise the integrity of the genome. Transcription can create the conditions for high levels of mutations and recombination by its ability to open the DNA structure and remodel chromatin, making it more accessible to DNA insulting agents, and by its ability to become a barrier to DNA replication. Here we review the molecular basis of such events from a mechanistic perspective with particular emphasis on the role of transcription as a genome instability determinant.
Biochimica et Biophysica Acta | 2013
Hélène Gaillard; Andrés Aguilera
During transcription, the nascent pre-mRNA associates with mRNA-binding proteins and undergoes a series of processing steps, resulting in export competent mRNA ribonucleoprotein complexes (mRNPs) that are transported into the cytoplasm. Throughout transcription elongation, RNA polymerases frequently deal with a number of obstacles that need to be removed for transcription resumption. One important type of hindrance consists of helix-distorting DNA lesions. Transcription-coupled repair (TC-NER), a specific sub-pathway of nucleotide excision repair, ensures a fast repair of such transcription-blocking lesions. While the nucleotide excision repair reaction is fairly well understood, its regulation and the way it deals with DNA transcription remains largely unknown. In this review, we update our current understanding of the factors involved in TC-NER and discuss their functional interplay with the processes of transcription elongation and mRNP biogenesis. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Nucleic Acids Research | 2007
Hélène Gaillard; Ralf Erik Wellinger; Andrés Aguilera
Although DNA repair is faster in the transcribed strand of active genes, little is known about the possible contribution of mRNP biogenesis and export in transcription-coupled repair (TCR). Interestingly, mutants of THO, a transcription complex involved in maintenance of genome integrity, mRNP biogenesis and export, were recently found to be deficient in nucleotide excision repair. In this study we show by molecular DNA repair analysis, that Sub2-Yra1 and Thp1-Sac3, two main mRNA export complexes, are required for efficient TCR in yeast. Careful analysis revealed that THO mutants are also specifically affected in TCR. Ribozyme-mediated mRNA self-cleavage between two hot spots for UV damage showed that efficient TCR does not depend on the nascent mRNA, neither in wild-type nor in mutant cells. Along with severe UV damage-dependent loss in processivity, RNAPII was found binding to chromatin upon UV irradiation in THO mutants, suggesting that RNAPII remains stalled at DNA lesions. Furthermore, Def1, a factor responsible for the degradation of stalled RNAPII, appears essential for the viability of THO mutants subjected to DNA damage. Our results indicate that RNAPII is not proficient for TCR in mRNP biogenesis and export mutants, opening new perspectives on our knowledge of TCR in eukaryotic cells.