Helge Klungland
Norwegian University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helge Klungland.
Mammalian Genome | 1995
Helge Klungland; Dag Inge Våge; Luis Gomez-Raya; Stefan Adalsteinsson; Sigbjørn Lien
The melanocyte-stimulating hormone (MSH) receptor has a major function in the regulation of black (eumelanin) versus red (phaeomelanin) pigment synthesis within melanocytes. We report three alleles of the MSH-receptor gene found in cattle. A point mutation in the dominant allele ED gives black coat color, whereas a frameshift mutation, producing a prematurely terminated receptor, in homozygous e/e animals, produces red coat color. The wild-type allele E+ produces a variety of colors, reflecting the possibilities for regulating the normal receptor. Microsatellite analysis, RFLP studies, and coat color information were used to localize the MSH-receptor to bovine Chromosome (Chr) 18.
Mammalian Genome | 1999
Dag Inge Våge; Helge Klungland; Dongsi Lu; Roger D. Cone
Abstract. Dominant black coat color in sheep is predicted to be caused by an allele ED at the extension locus. Recent studies have shown that this gene encodes the melanocyte stimulating hormone receptor (MC1-R). In mouse and fox, naturally occurring mutations in the coding region of MC1-R produce a constitutively activated receptor that switches the synthesis from phaeomelanin to eumelanin within the melanocyte, explaining the black coat color observed phenotypically. In the sheep, we have identified a Met→Lys mutation in position 73 (M73K) together with a Asp → Asn change at position 121 (D121N) showing complete cosegregation with dominant black coat color in a family lineage. Only the M73K mutation showed constitutive activation when introduced into the corresponding mouse receptor (mMC1-R) for pharmacological analysis; however, the position corresponding to D121 in the mouse receptor is required for high affinity ligand binding. The pharmacological profile of the M73K change is unique compared to the constitutively active E92K mutation in the sombre mouse and C123R mutation in the Alaska silver fox, indicating that the M73K change activates the receptor via a mechanism distinct from these previously characterized mutations.
Mammalian Genome | 2001
Helge Klungland; Ayman Mahmoud Sabry; B. Heringstad; Hanne Gro Olsen; Luis Gomez-Raya; Dag Inge Våge; Ingrid Olsaker; Jørgen Ødegård; G. Klemetsdal; Nina Schulman; Johanna Vilkki; John Ruane; Monica Aasland; Knut Rønningen; Sigbjørn Lien
Abstract. Norway has a field recording system for dairy cattle that includes recording of all veterinary treatments on an individual animal basis from 1978 onwards. Application of these data in a genome search for quantitative trait loci (QTL) verified genome-wise significant QTL affecting clinical mastitis on Chromosome (Chr) 6. Additional putative QTL for clinical mastitis were localized to Chrs. 3, 4, 14, and 27. The comprehensive field recording system includes information on somatic cell count as well. This trait is often used in selection against mastitis when direct information on clinical mastitis is not available. The absence of common QTL positions for the two traits in our study indicates that the use of somatic cell count data in QTL studies aimed for reducing the incidence of mastitis should be carefully evaluated.
Acta Neurologica Scandinavica | 2008
Ronny Myhre; Mathias Toft; Jennifer M. Kachergus; Mary M. Hulihan; Jan O. Aasly; Helge Klungland; Matthew J. Farrer
Objectives – Previous studies have found associations between Parkinson’s disease (PD) and polymorphisms located within both the alpha‐synuclein gene (SNCA) promoter and other gene regions. Our aim was to study SNCA gene markers in a closely matched Norwegian PD population to examine the genetic relationship between different polymorphisms associated with the disease.
Mammalian Genome | 2000
Sigbjørn Lien; Astrid Karlsen; G. Klemetsdal; Dag Inge Våge; Ingrid Olsaker; Helge Klungland; Monica Aasland; B. Heringstad; John Ruane; Luis Gomez-Raya
Abstract. An autosomal genome scan for quantitative trait loci (QTL) affecting twinning rate was carried out in the Norwegian Cattle population. Suggestive QTL were detected on Chromosomes (Chr) 5, 7, 12, and 23. Among these, the QTL positions on both Chr 5 and Chr 23 are strongly supported by literature in the field. Our results also confirm previous mapping of a QTL for twinning to Chr 7, but definitely suggest a different location of the QTL on this chromosome. The most convincing QTL peak was observed for a region in the middle part of Chr 5 close to the insulin-like growth factor 1 (IGF1) gene. Since IGF1 plays an important role in the regulation of folliculogenesis, a mutation search was performed by sequencing more than 3.5 kb of the gene in actual families. The sequencing revealed three polymorphisms in noncoding regions of the gene that will be important in fine structure mapping and characterization of the QTL.
Peptides | 2005
Dag Inge Våge; Eva Fuglei; Kristin Snipstad; Janne Beheim; Veslemøy Malm Landsem; Helge Klungland
We have characterized two mutations in the MC1R gene of the blue variant of the arctic fox (Alopex lagopus) that both incorporate a novel cysteine residue into the receptor. A family study in farmed arctic foxes verified that the dominant expression of the blue color phenotype cosegregates completely with the allele harboring these two mutations. Additionally to the altered pigment synthesis, the blue fox allele suppresses the seasonal change in coat color found in the native arctic fox. Consequently, these findings suggest that the MC1R/agouti regulatory system is involved in the seasonal changes of coat color found in arctic fox.
BMC Neurology | 2008
Ronny Myhre; Stina Steinkjer; Alice Stormyr; Gina L Nilsen; Hiba Abu Zayyad; Khalid Horany; Mohamad K. Nusier; Helge Klungland
BackgroundParkinsons disease is a progressive neurodegenerative disorder, where most cases are sporadic with a late onset. In rare incidences familial forms of early-onset parkinsonism occur, and when recessively inherited, cases are often explained by mutations in either the parkin (PARK2) or PINK1 (PARK6) gene or on exceptional occasions the DJ-1 (PARK7) or ATP13A2 (PARK9) gene. Recessively inherited deletions/duplications and point mutations in the parkin gene are the most common cause of early-onset parkinsonism known so far, but in an increasing number of studies, genetic variations in the serine/threonine kinase domain of the PINK1 gene are found to explain early-onset parkinsonism.MethodsIn this study all families were from a population with a high incidence of consanguinity. We investigated 11 consanguineous families comprising 17 affected with recessively inherited young-onset parkinsonism for mutations both in the parkin and PINK1 gene. Exons and flanking regions were sequenced, and segregation patterns of genetic variation were assessed in members of the respective families. An exon dosage analysis was performed for all exons in both genes.ResultsIn the parkin gene, a three generation family was identified with an exon 4 deletion segregating with disease. Both affected were homozygous for the deletion that segregated on a haplotype that spanned the gene in a haplotype segregation analysis that was performed using additional markers. Exon dosage analysis confirmed the recessive pattern of inheritance with heterozygous deletions segregating in healthy family members. In the PINK1 gene we identified two novel putative pathogenic substitutions, P416R and S419P, located in a conserved motif of the serine/threonine kinase domain. Both substitutions segregated with disease in agreement with a recessive pattern of inheritance within respective families and both were present as homozygous in two affected each. We also discuss common polymorphisms in the two genes found to be co-segregating within families.ConclusionOur results further extend on the involvement of PINK1 mutations in recessive early-onset parkinsonism with clinical features similar to carriers of parkin mutations.
Italian Journal of Pediatrics | 2010
Mohamad K. Nusier; Hedda Konstanse Brodtkorb; Siv Elisabeth Rein; Ahmed Odeh; Abdelrahman M Radaideh; Helge Klungland
BackgroundCeliac disease (CD) emerged as a public health problem, and the disease prevalence varies among different races. The present study was designed to investigate the prevalence of CD using serological markers in apparently healthy schoolchildren in Irbid City, Jordan. Additionally, the effect of positive serology on height, weight and body mass index (BMI) was evaluated.MethodsThe study population consisted of 1985 children (1117 girls and 868 boys), age range was 5.5 to 9.5 years. Height and weight were measured and blood samples were collected from each individual. Serum samples were analyzed for IgA anti-tissue transglutaminase antibodies (tTG) using a commercial enzyme-linked immunosorbent assay (ELISA). tTG positive samples were further analyzed for IgA anti-endomysium antibodies (EmA) with a commercial ELISA. Samples confirmed positive with EmA were considered seropositive.ResultsSixteen children were CD positive. The serological prevalence was estimated to be 1:124 (0.8%; 95% CI, 0.5% to 1.3%). Significant impact on growth (height) was found in seropositive children. When both sexes were individually analyzed, only boys showed height reduction. Furthermore, seropositive boys also had a significant weight reduction.ConclusionThis study demonstrated that CD is prevalent among schoolchildren in Jordan. The seropositive children tend to have lower height, weight, and BMI than the seronegative group. These differences were significant only for boys. None of the participants is known to have CD prior to the study.
BMC Medical Genetics | 2008
Ronny Myhre; Helge Klungland; Matthew J. Farrer; Jan O. Aasly
BackgroundPost-mortem Lewy body and Lewy neuritic inclusions are a defining feature of Parkinsons disease (PD) and dementia with Lewy bodies (DLB). With the discovery of missense and multiplication mutations in the alpha-synuclein gene (SNCA) in familial parkinsonism, Lewy inclusions were found to stain intensely with antibodies raised against the protein. Yeast-two-hybrid studies identified synphilin-1 as an interacting partner of alpha-synuclein, and both proteins show co-immunolocalization in a subset of Lewy body inclusions. In the present study, we have investigated whether common variability in synphilin-1, including coding substitutions are genetically associated with disease pathogenesis.MethodsWe screened the synphilin-1 gene for 11 single nucleotide polymorphisms (SNPs) in 300 affected subjects with idiopathic Parkinsons disease and 412 healthy controls. Six of these were rare variants including five previously identified amino acid substitutions that were chosen in a direct approach for association of rare disease causing mutations. An additional five highly heterozygous SNPs were chosen for an indirect association approach including haplotype analysis, based on the assumption that any disease causing mutations might be in linkage disequilibrium with the SNPs selected. We also genotyped a microsatellite marker (D5S2950) within intron 6 of the gene and five additional microsatellites clustered downstream of the 5p23.1-23.3 synphilin-1 locus. Genome-wide linkage analysis, in a number of independent studies, has previously highlighted suggestive linkage to PD in this region of chromosome 5.ResultsScreening of previously known amino acid substitutions in the synphilin-1 gene, identified the C1861>T (R621C) substitution in four patients (chromosomes n = 600) and 10 control subjects (chromosomes n = 824), whereas the G2125>C (E706Q) substitution was detected in one patient and four control subject, suggesting both these substitutions are not associated with susceptibility to PD. Heterozygous non-synonymous T131>C (V44A) and synonymous C636>T (P212P) amino acid substitutions were each detected in only one patient with PD. Heterozygous C1134>T (L378L) synonymous substitutions were found in two patients with PD and one control subject. D5S2010 the most distal telomeric microsatellite marker genotyped,15.3 Mb from synphilin-1, was genetically associated with PD (p = 0.006, 27df) independently adjusted for multiple testing according to its high amount of alleles but not the total number of other markers investigated. Other flanking and intronic SNP and microsatellite markers showed no evidence for genetic association with disease.ConclusionIn this study rare synphilin-1 SNPs were assessed in a direct association approach to identify amino acid substitutions that might confer risk of PD in a homozygous or compound heterozygous state. We found none of these rare variations were associated with disease. In contrast to prior studies the frequency of the R621C substitution was not significantly different between PD and control subjects, neither were the V44A or E706Q substitutions. Similarly, our indirect study of more heterozygous SNPs, including both single marker and haplotype analyses, showed no significant association to PD. However, marginal association of microsatellite alleles with idiopathic PD, within the chromosome 5q21 region, indicates further studies are warranted.
Muscle & Nerve | 2007
Eva K. Svaasand; Jan O. Aasly; Veslemøy Malm Landsem; Helge Klungland
The X‐linked recessive disease phosphoglycerate kinase (PGK) deficiency is caused by altered expression of the PGK1 enzyme, which causes muscle stiffness, hemolytic anemia, and mental retardation. In this study we characterized the PGK1 gene in a family of two brothers, two sisters, and their parents. A single mutation in exon 6, which was associated with the pattern of inheritance of PGK1 deficiency, was observed. This silent G213G; c.639C>T mutation was localized to the conserved exon–intron boundary. We have developed a method for quantification of PGK1 mRNA and demonstrated a marked reduction in PGK1 mRNA in both brothers with the disease. A smaller decrease in PGK1 expression was observed in one sister with symptoms of PGK deficiency and in her mother. Only the normal PGK1 allele was expressed in the two heterozygous women. Whereas most known PGK1 mutations cause amino acid alterations, our study indicates that inhibition of the transcription mechanism is the cause of PGK deficiency. Muscle Nerve, 2007