Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helge Müller-Fielitz is active.

Publication


Featured researches published by Helge Müller-Fielitz.


Nature Communications | 2014

The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages.

Mahbubur Rahman; Sajjad Muhammad; Mahtab A. Khan; Hui Chen; Dirk A. Ridder; Helge Müller-Fielitz; Barbora Pokorná; Tillman Vollbrandt; Ines Stölting; Roger Nadrowitz; Jürgen G. Okun; Stefan Offermanns; Markus Schwaninger

The ketone body β-hydroxybutyrate (BHB) is an endogenous factor protecting against stroke and neurodegenerative diseases, but its mode of action is unclear. Here we show in a stroke model that the hydroxy-carboxylic acid receptor 2 (HCA2, GPR109A) is required for the neuroprotective effect of BHB and a ketogenic diet, as this effect is lost in Hca2(-/-) mice. We further demonstrate that nicotinic acid, a clinically used HCA2 agonist, reduces infarct size via a HCA2-mediated mechanism, and that noninflammatory Ly-6C(Lo) monocytes and/or macrophages infiltrating the ischemic brain also express HCA2. Using cell ablation and chimeric mice, we demonstrate that HCA2 on monocytes and/or macrophages is required for the protective effect of nicotinic acid. The activation of HCA2 induces a neuroprotective phenotype of monocytes and/or macrophages that depends on PGD2 production by COX1 and the haematopoietic PGD2 synthase. Our data suggest that HCA2 activation by dietary or pharmacological means instructs Ly-6C(Lo) monocytes and/or macrophages to deliver a neuroprotective signal to the brain.


American Journal of Physiology-endocrinology and Metabolism | 2013

High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice

Johanna L. Barclay; Anton Shostak; Alexei Leliavski; Anthony H. Tsang; Olaf Jöhren; Helge Müller-Fielitz; Dominic Landgraf; Nadine Naujokat; Gijsbertus T. J. van der Horst; Hendrik Oster

Perturbation of circadian rhythmicity in mammals, either by environmental influences such as shiftwork or by genetic manipulation, has been associated with metabolic disturbance and the development of obesity and diabetes. Circadian clocks are based on transcriptional/translational feedback loops, comprising positive and negative components. Whereas the metabolic effects of deletion of the positive arm of the clock gene machinery, as in Clock- or Bmal1-deficient mice, have been well characterized, inactivation of Period genes (Per1-3) as components of the negative arm have more complex, sometimes contradictory effects on energy homeostasis. The CRYPTOCHROMEs are critical interaction partners of PERs, and simultaneous deletion of Cry1 and -2 results in behavioral and molecular circadian arrhythmicity. We show that, when challenged with a high-fat diet, Cry1/2(-/-) mice rapidly gain weight and surpass that of wild-type mice, despite displaying hypophagia. Transcript analysis of white adipose tissue reveals upregulated expression of lipogenic genes, many of which are insulin targets. High-fat diet-induced hyperinsulinemia, as a result of potentiated insulin secretion, coupled with selective insulin sensitivity in adipose tissue of Cry1/2(-/-) mice, correlates with increased lipid uptake. Collectively, these data indicate that Cry deficiency results in an increased vulnerability to high-fat diet-induced obesity that might be mediated by increased insulin secretion and lipid storage in adipose tissues.


Journal of Medicinal Chemistry | 2014

Development of Novel Potent Orally Bioavailable Oseltamivir Derivatives Active against Resistant Influenza A

Dennis Schade; Joscha Kotthaus; Lukas Riebling; Jürke Kotthaus; Helge Müller-Fielitz; Walter Raasch; Oliver Koch; Nora Seidel; Michaela Schmidtke; Bernd Clement

With the emergence of oseltamivir-resistant influenza viruses and in view of a highly pathogenic flu pandemic, it is important to develop new anti-influenza agents. Here, the development of neuraminidase (NA) inhibitors that were designed to overcome resistance mechanisms along with unfavorable pharmacokinetic (PK) properties is described. Several 5-guanidino- and 5-amidino-based oseltamivir derivatives were synthesized and profiled for their anti-influenza activity and in vitro and in vivo PK properties. Amidine 6 and guanidine 7 were comparably effective against a panel of different A/H1N1 and A/H3N2 strains and also inhibited mutant A/H1N1 neuraminidase. Among different prodrug strategies pursued, a simple amidoxime ethyl ester (9) exhibited a superior PK profile with an oral bioavailability of 31% (rats), which is comparable to oseltamivir (36%). Thus, bioisosteric replacement of the 5-guanidine with an acetamidine-in the form of its N-hydroxy prodrug-successfully tackled the two key limitations of currently used NA inhibitors, as exemplified with oseltamivir.


British Journal of Pharmacology | 2012

Double blockade of angiotensin II (AT1)-receptors and ACE does not improve weight gain and glucose homeostasis better than single-drug treatments in obese rats

Anja Miesel; Helge Müller-Fielitz; Olaf Jöhren; Florian M Vogt; Walter Raasch

BACKGROUND AND PURPOSE Combination therapies are becoming increasingly important for the treatment of high blood pressure. Little is known about whether double blockade of angiotensin II (AT1) receptors and angiotensin‐converting enzyme (ACE) exert synergistic metabolic effects.


British Journal of Pharmacology | 2014

Chronic blockade of angiotensin AT1 receptors improves cardinal symptoms of metabolic syndrome in diet‐induced obesity in rats

Helge Müller-Fielitz; Nils Hübel; Martin Mildner; Florian M Vogt; Jörg Barkhausen; Walter Raasch

AT1 receptor antagonists decrease body weight gain in models of murine obesity. However, fewer data are available concerning the anti‐obesity effects of these antagonists, given as a treatment after obesity had been established.


Endocrinology | 2012

Improved Insulin Sensitivity after Long-Term Treatment with AT1 Blockers Is Not Associated with PPARγ Target Gene Regulation

Helge Müller-Fielitz; Julia Landolt; Marc Heidbreder; Stefan Werth; Florian M Vogt; Olaf Jöhren; Walter Raasch

In both cell culture experiments and in vivo studies, a number of angiotensin II type 1 (AT(1)) receptor antagonists activated the peroxisome proliferator-activated receptor-γ (PPARγ). This mechanism has been discussed to be, at least in part, responsible for the improvement in glucose metabolism observed in animal studies and clinical trials. To investigate whether the PPARγ-dependent mechanism may represent a valid target for chronic therapy, spontaneously hypertensive rats (SHR) were fed either with a cafeteria diet (CD) or standard chow. CD-fed SHR were simultaneously treated with either telmisartan (TEL; 8 mg/kg(body weight)· d) or candesartan (CAND; 10 mg/kg(body weight)· d) for 3 months because TEL, but not CAND, has been demonstrated to be a strong activator of PPARγ. After 3 months, chow- and CD-fed controls were hypertensive, whereas TEL and CAND treatment resulted in normalized blood pressures in SHR. Body weight and the amount of abdominal fat (determined by magnetic resonance imaging) were higher in CD- than in chow-fed SHR. After TEL or CAND, body weight, abdominal fat quantity, and adipocyte size returned to normal. In glucose tolerance tests, the glucose responses were comparable in the TEL- and CAND-treated SHR and obese controls, whereas the insulin response was almost halved by AT(1) blockade. Expression of PPARγ target genes aP2, FAT CD36, FASn, and PEPCK remained unaltered at the protein level in visceral fat after TEL and CAND compared with the CD-fed controls. Because the expression of examined PPARγ target genes was not affected, we concluded that improved insulin sensitivity after long-term treatment with AT(1) blockers was not related to a PPARγ-dependent mechanism.


Endocrinology | 2012

Involvement of doublecortin-expressing cells in the arcuate nucleus in body weight regulation

Lars Werner; Helge Müller-Fielitz; Manuela Ritzal; Tim Werner; Moritz J. Rossner; Markus Schwaninger

Hypothalamic functions, including feeding behavior, show a high degree of plasticity throughout life. Doublecortin (DCX) is a marker of plasticity and neuronal migration expressed in the hypothalamus. Therefore, we wanted to map the fate of DCX(+) cells in the arcuate nucleus (ARC) of the hypothalamus. For this purpose, we generated a BAC transgenic mouse line that expresses the inducible recombinase CreER(T2) under control of the DCX locus. Crossing this line with the Rosa26 or Ai14 reporter mouse lines, we found reporter(+) cells in the ARC upon tamoxifen treatment. They were born prenatally and expressed both DCX and the plasticity marker TUC-4. Immediately after labeling, reporter(+) cells had an enlarged soma that normalized over time, suggesting morphological remodeling. Reporter(+) cells expressed β-endorphin and BSX, neuronal markers of the feeding circuit. Furthermore, leptin treatment led to phosphorylation of STAT3 in reporter(+) cells in accordance with the concept that they are part of the feeding circuits. Indeed, we found a negative correlation between the number of reporter(+) cells and body weight and epididymal fat pads. Our data suggest that DCX(+) cells in the ARC represent a cellular correlate of plasticity that is involved in controlling energy balance in adult mice.


British Journal of Pharmacology | 2012

Blood pressure response to angiotensin II is enhanced in obese Zucker rats and is attributed to an aldosterone‐dependent mechanism

Helge Müller-Fielitz; Margot Lau; Olaf Jöhren; Florian Stellmacher; Markus Schwaninger; Walter Raasch

BACKGROUND AND PURPOSE Plasma aldosterone levels correlate positively with obesity, suggesting a link between the hypertension associated with obesity and increased mineralocorticoid levels. We tested the hypothesis that aldosterone is involved in the BP response to angiotensin II (AngII) in obese rats.


British Journal of Pharmacology | 2015

Preventing leptin resistance by blocking angiotensin II AT1 receptors in diet-induced obese rats

Helge Müller-Fielitz; Margot Lau; Cathleen Geißler; Lars Werner; Martina Winkler; Walter Raasch

AT1 receptor blockers (ARBs) represent an approach for treating metabolic syndrome due to their potency in reducing hypertension, body weight and onset of type 2 diabetes. The mechanism underlying ARB‐induced weight loss is still unclear.


ChemMedChem | 2011

New prodrugs of the antiprotozoal drug pentamidine.

Joscha Kotthaus; Jürke Kotthaus; Dennis Schade; Ulrike Schwering; Helen Hungeling; Helge Müller-Fielitz; Walter Raasch; Bernd Clement

Pentamidine is an effective antimicrobial agent that is approved for the treatment of African trypanosomiasis but suffers from poor oral bioavailability and central nervous system (CNS) penetration. This work deals with the development and systematic characterisation of new prodrugs of pentamidine. For this reason, numerous prodrugs that use different prodrug principles were synthesised and examined in vitro and in vivo. Another objective of the study was the determination of permeability of the different pentamidine prodrugs. While some of the prodrug principles applied in this study are known, such as the conversion of the amidine functions into amidoximes or the O‐alkylation of amidoximes with a carboxymethyl residue, others were developed more recently and are described here for the first time. These newly developed methods aim to increase the affinity of the prodrug for the transporters and mediate an active uptake via carrier systems by conjugation of amidoximes with compounds that improve the overall solubility of the prodrug. The different principles chosen resulted in several pentamidine prodrugs with various advantages. The objective of this investigation was the systematic characterisation and evaluation of eight pentamidine prodrugs in order to identify the most appropriate strategy to improve the properties of the parent drug. For this reason, all prodrugs were examined with respect to their solubility, stability, enzymatic activation, distribution, CNS delivery, and oral bioavailability. The results of this work have allowed reliable conclusions to be drawn regarding the best prodrug principle for the antiprotozoal drug pentamidine.

Collaboration


Dive into the Helge Müller-Fielitz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge