Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helge Weingart is active.

Publication


Featured researches published by Helge Weingart.


Applied and Environmental Microbiology | 2004

NorM, an Erwinia amylovora Multidrug Efflux Pump Involved in In Vitro Competition with Other Epiphytic Bacteria

Antje Burse; Helge Weingart; Matthias S. Ullrich

ABSTRACT Blossoms are important sites of infection for Erwinia amylovora, the causal agent of fire blight of rosaceous plants. Before entering the tissue, the pathogen colonizes the stigmatic surface and has to compete for space and nutrient resources within the epiphytic community. Several epiphytes are capable of synthesizing antibiotics with which they antagonize phytopathogenic bacteria. Here, we report that a multidrug efflux transporter, designated NorM, of E. amylovora confers tolerance to the toxin(s) produced by epiphytic bacteria cocolonizing plant blossoms. According to sequence comparisons, the single-component efflux pump NorM is a member of the multidrug and toxic compound extrusion protein family. The corresponding gene is widely distributed among E. amylovora strains and related plant-associated bacteria. NorM mediated resistance to the hydrophobic cationic compounds norfloxacin, ethidium bromide, and berberine. A norM mutant was constructed and exhibited full virulence on apple rootstock MM 106. However, it was susceptible to antibiotics produced by epiphytes isolated from apple and quince blossoms. The epiphytes were identified as Pantoea agglomerans by 16S rRNA analysis and were isolated from one-third of all trees examined. The promoter activity of norM was twofold greater at 18°C than at 28°C. The lower temperature seems to be beneficial for host infection because of the availability of moisture necessary for movement of the pathogen to the infection sites. Thus, E. amylovora might employ NorM for successful competition with other epiphytic microbes to reach high population densities, particularly at a lower temperature.


Phytopathology | 2001

The Role of Ethylene Production in Virulence of Pseudomonas syringae pvs. glycinea and phaseolicola.

Helge Weingart; Henriette Ullrich; Klaus Geider; Beate Völksch

ABSTRACT The importance of ethylene production for virulence of Pseudomonas syringae pvs. glycinea and phaseolicola was assayed by comparing bacterial multiplication and symptom development in bean and soybean plants inoculated with ethylene-negative (efe) mutants and wild-type strains. The efe mutants of Pseudomonas syringae pv. glycinea were significantly reduced in their ability to grow in planta. However, the degree of reduction was strain-dependent. Population sizes of efe mutant 16/83-E1 that did not produce the phototoxin coronatine were 10- and 15-fold lower than those of the wild-type strain on soybean and on bean, and 16/83-E1 produced very weak symptoms compared with the wild-type strain. The coronatine-producing efe mutant 7a/90-E1 reached fourfold and twofold lower population sizes compared with the wild-type strain on soybean and bean, respectively, and caused disease symptoms typical of the wild-type strain. Experiments with ethylene-insensitive soybeans confirmed these results. The virulence of the wild-type strains was reduced to the same extent in ethylene-insensitive soybean plants as the virulence of the efe mutants in ethylene-susceptible soybeans. In contrast, the virulence of Pseudomonas syringae pv. phaseolicola was not affected by disruption of the efe gene.


Journal of Physical Chemistry B | 2010

Molecular basis of enrofloxacin translocation through OmpF, an outer membrane channel of Escherichia coli--when binding does not imply translocation.

Kozhinjampara R. Mahendran; Eric Hajjar; Tivadar Mach; Marcos Lovelle; Amit Kumar; Isabel Sousa; Enrico Spiga; Helge Weingart; Paula Gameiro; Mathias Winterhalter; Matteo Ceccarelli

The molecular pathway of enrofloxacin, a fluoroquinolone antibiotic, through the outer membrane channel OmpF of Escherichia coli is investigated. High-resolution ion current fluctuation analysis reveals a strong affinity for enrofloxacin to OmpF, the highest value ever recorded for an antibiotic-channel interaction. A single point mutation in the constriction zone of OmpF, replacing aspartic acid at the 113 position with asparagine (D113N), lowers the affinity to a level comparable to other antibiotics. All-atom molecular dynamics simulations allow rationalizing the translocation pathways: wild-type OmpF has two symmetric binding sites for enrofloxacin located at each channel entry separated by a large energy barrier in the center, which inhibits antibiotic translocation. In this particular case, our simulations suggest that the ion current blockages are caused by molecules occupying either one of these peripheral binding sites. Removal of the negative charge on position 113 removes the central barrier and shifts the two peripheral binding sites to a unique central site, which facilitates translocation. Fluorescence steady-state measurements agree with the different location of binding sites for wild-type OmpF and the mutant. Our results demonstrate how a single-point mutation of the porin, and the resulting intrachannel shift of the affinity site, may substantially modify translocation.


Phytopathology | 1999

Comparison of Ethylene Production by Pseudomonas syringae and Ralstonia solanacearum

Helge Weingart; Beate Völksch; Matthias S. Ullrich

ABSTRACT Strains of Pseudomonas syringae pv. pisi and Ralstonia solanacearum produced ethylene at rates 20- and 200-fold lower, respectively, than strains of P. syringae pvs. cannabina, glycinea, phaseolicola, and sesami. In the current study, we investigated which ethylene biosynthetic pathways were used by P. syringae pv. pisi and R. solanacearum. Neither the activity of an ethylene-forming enzyme nor a corresponding efe gene homolog could be detected in R. solanacearum, suggesting synthesis of ethylene via 2-keto-4-methyl-thiobutyric acid. In contrast, 2-oxoglutarate-dependent ethylene formation was observed with P. syringae pv. pisi, and Southern blot hybridization revealed the presence of an efe homolog in this pathovar. The efe genes from P. syringae pvs. cannabina, glycinea, phaseolicola, pisi, and sesami were sequenced. Nucleotide sequence comparisons indicated that the efe gene in pv. pisi was not as highly conserved as it was in other P. syringae pathovars. The pv. pisi efe homolog showed numerous nucleotide substitutions and a deletion of 13 amino acids at the C-terminus of the predicted gene product. These sequence alterations might account for the lower rate of ethylene production by this pathovar. All ethylene-producing P. syringae pathovars were virulent on bush bean plants. The overlapping host range of these pathovars suggests that horizontal transfer of the efe gene may have occurred among bacteria inhabiting the same host.


Angewandte Chemie | 2014

Chemosensing ensembles for monitoring biomembrane transport in real time.

Garima Ghale; Adrienne G. Lanctôt; Hannah T. Kreissl; Maik H. Jacob; Helge Weingart; Mathias Winterhalter; Werner M. Nau

The efficacy of drugs and biomolecules relies on their ability to pass through the bilayer. The development of methods to directly and sensitively monitor these membrane transport processes has remained an experimental challenge. A macrocyclic host (p-sulfonatocalix[4]arene or cucurbit[7]uril) and a fluorescent dye (lucigenin or berberine) are encapsulated as a chemosensing ensemble inside liposomes, which allows for a direct, real-time fluorescence monitoring of the passage of unlabeled bioorganic analytes. This in vitro assay is transferable to different channel proteins and analytes, has potential for fluorescence-based screening, e.g., of channel modulators, and yields the absolute kinetics of translocation. Using this new biophysical method, we observed for the first time direct rapid translocation of protamine, an antimicrobial peptide, through the bacterial transmembrane protein OmpF.


Journal of Biomolecular Screening | 2010

Permeation of antibiotics through Escherichia coli OmpF and OmpC porins: screening for influx on a single-molecule level.

Kozhinjampara R. Mahendran; Mohamed Kreir; Helge Weingart; Niels Fertig; Mathias Winterhalter

A chip-based automated patch-clamp technique provides an attractive biophysical tool to quantify solute permeation through membrane channels. Proteo–giant unilamellar vesicles (proteo-GUVs) were used to form a stable lipid bilayer across a micrometer-sized hole. Because of the small size and hence low capacitance of the bilayer, single-channel recordings were achieved with very low background noise. The latter allowed the characterization of the influx of 2 major classes of antibiotics—cephalosporins and fluoroquinolones—through the major Escherichia coli porins OmpF and OmpC. Analyzing the ion current fluctuations in the presence of antibiotics revealed transport properties that allowed the authors to determine the mode of permeation. The chip-based setup allows rapid solution exchange and efficient quantification of antibiotic permeation through bacterial porins on a single-molecule level.


Applied and Environmental Microbiology | 2008

Characterization of the RND-Type Multidrug Efflux Pump MexAB-OprM of the Plant Pathogen Pseudomonas syringae

Savina O. Stoitsova; Yvonne Braun; Matthias S. Ullrich; Helge Weingart

ABSTRACT In gram-negative bacteria, transporters belonging to the RND family are the transporters most relevant for resistance to antimicrobial compounds. In Pseudomonas aeruginosa, a clinically important pathogen, the RND-type pump MexAB-OprM has been recognized as one of the major multidrug efflux systems. Here, homologues of MexAB-OprM in the plant pathogens Pseudomonas syringae pv. phaseolicola 1448A, P. syringae pv. syringae B728a, and P. syringae pv. tomato DC3000 were identified, and mexAB-oprM-deficient mutants were generated. Determination of MICs revealed that mutation of MexAB-OprM dramatically reduced the tolerance to a broad range of antimicrobials. Moreover, the ability of the mexAB-oprM-deficient mutants to multiply in planta was reduced. RNA dot blot hybridization revealed growth-dependent regulation of the mexAB-oprM operon in P. syringae; the expression of this operon was maximal in early exponential phase and decreased gradually during further growth.


Journal of Biological Chemistry | 2010

Implication of Porins in β-Lactam Resistance of Providencia stuartii

Que-Tien Tran; Kozhinjampara R. Mahendran; Eric Hajjar; Matteo Ceccarelli; Anne Davin-Regli; Mathias Winterhalter; Helge Weingart; Jean-Marie Pagès

An integrative approach combining biophysical and microbiological methods was used to characterize the antibiotic translocation through the outer membrane of Providencia stuartii. Two novel members of the General Bacterial Porin family of Enterobacteriaceae, named OmpPst1 and OmpPst2, were identified in P. stuartii. In the presence of ertapenem (ERT), cefepime (FEP), and cefoxitin (FOX) in growth media, several resistant derivatives of P. stuartii ATCC 29914 showed OmpPst1-deficiency. These porin-deficient strains showed significant decrease of susceptibility to β-lactam antibiotics. OmpPst1 and OmpPst2 were purified to homogeneity and reconstituted into planar lipid bilayers to study their biophysical characteristics and their interactions with β-lactam molecules. Determination of β-lactam translocation through OmpPst1 and OmpPst2 indicated that the strength of interaction decreased in the order of ertapenem ≫ cefepime > cefoxitin. Moreover, the translocation of these antibiotics through OmpPst1 was more efficient than through OmpPst2. Heterologous expression of OmpPst1 in the porin-deficient E. coli strain BL21(DE3)omp8 was associated with a higher antibiotic susceptibility of the E. coli cells to β-lactams compared with expression of OmpPst2. All our data enlighten the involvement of porins in the resistance of P. stuartii to β-lactam antibiotics.


Biophysical Journal | 2010

Comparing the Temperature-Dependent Conductance of the Two Structurally Similar E. coli Porins OmpC and OmpF

István Biró; Soroosh Pezeshki; Helge Weingart; Mathias Winterhalter; Ulrich Kleinekathöfer

The temperature-dependent ion conductance of OmpC, a major outer membrane channel of Escherichia coli, is predicted using all-atom molecular dynamics simulations and experimentally verified. To generalize previous results, OmpC is compared to its structural homolog OmpF at different KCl concentrations, pH values, and a broad temperature range. At low salt concentrations and up to room temperature, the molecular modeling predicts the experimental conductance accurately. At high salt concentrations above 1 M KCl and above room temperature, the simulations underestimate the conductance. Moreover, the temperature dependence of the channel conductance is different from that of the bulk, both in experiment and simulation, indicating a strong contribution of surface effects to the ion conductance. With respect to OmpC, subconductance levels can be observed in experiments only. Subconductance and gating levels can be clearly distinguished by their differences in conductance values and temperature-dependent behavior. With increasing temperature, the probability of a subconductance state to occur, increases, while the dwell time is decreased. The open probability, frequency, and dwell time of such states is largely pH- and KCl concentration-independent, while their amplitudes show a lower increase with increasing salt concentration than gating amplitudes. Voltage dependence of subconductance has been found to be negligible within the uncertainty of the measurements.


Applied and Environmental Microbiology | 2010

Impact of Siderophore Production by Pseudomonas syringae pv. syringae 22d/93 on Epiphytic Fitness and Biocontrol Activity against Pseudomonas syringae pv. glycinea 1a/96

Annette Wensing; Sascha D. Braun; Petra Büttner; Dominique Expert; Beate Völksch; Matthias S. Ullrich; Helge Weingart

ABSTRACT The use of naturally occurring microbial antagonists to suppress plant diseases offers a favorable alternative to classical methods of plant protection. The soybean epiphyte Pseudomonas syringae pv. syringae strain 22d/93 shows great potential for controlling P. syringae pv. glycinea, the causal agent of bacterial blight of soybean. Its activity against P. syringae pv. glycinea is highly reproducible even in field trials, and the suppression mechanisms involved are of special interest. In this work we demonstrated that P. syringae pv. syringae 22d/93 produced a significantly larger amount of siderophores than the pathogen P. syringae pv. glycinea produced. While P. syringae pv. syringae 22d/93 and P. syringae pv. glycinea produce the same siderophores, achromobactin and pyoverdin, the regulation of siderophore biosynthesis in the former organism is very different from that in the latter organism. The epiphytic fitness of P. syringae pv. syringae 22d/93 mutants defective in siderophore biosynthesis was determined following spray inoculation of soybean leaves. The population size of the siderophore-negative mutant P. syringae pv. syringae strain 22d/93ΔSid was 2 orders of magnitude lower than that of the wild type 10 days after inoculation. The growth deficiency was compensated for when wound inoculation was used, indicating the availability of iron in the presence of small lesions on the leaves. Our results suggest that siderophore production has an indirect effect on the biocontrol activity of P. syringae pv. syringae 22d/93. Although siderophore-defective mutants of P. syringae pv. syringae 22d/93 still suppressed development of bacterial blight caused by P. syringae pv. glycinea, siderophore production enhanced the epiphytic fitness and thus the competitiveness of the antagonist.

Collaboration


Dive into the Helge Weingart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yvonne Braun

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar

Daniel Pletzer

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Hajjar

University of Cagliari

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge