Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heli Liu is active.

Publication


Featured researches published by Heli Liu.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Structure of Follicle-Stimulating Hormone in Complex with the Entire Ectodomain of its Receptor.

Xuliang Jiang; Heli Liu; Xiaoyan Chen; Po Han Chen; David Fischer; Venkataraman Sriraman; Henry N. Yu; Steve Arkinstall; Xiaolin He

FSH, a glycoprotein hormone, and the FSH receptor (FSHR), a G protein-coupled receptor, play central roles in human reproduction. We report the crystal structure of FSH in complex with the entire extracellular domain of FSHR (FSHRED), including the enigmatic hinge region that is responsible for signal specificity. Surprisingly, the hinge region does not form a separate structural unit as widely anticipated but is part of the integral structure of FSHRED. In addition to the known hormone-binding site, FSHRED provides interaction sites with the hormone: a sulfotyrosine (sTyr) site in the hinge region consistent with previous studies and a potential exosite resulting from putative receptor trimerization. Our structure, in comparison to others, suggests FSHR interacts with its ligand in two steps: ligand recruitment followed by sTyr recognition. FSH first binds to the high-affinity hormone-binding subdomain of FSHR and reshapes the ligand conformation to form a sTyr-binding pocket. FSHR then inserts its sTyr (i.e., sulfated Tyr335) into the FSH nascent pocket, eventually leading to receptor activation.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Structures of a platelet-derived growth factor/propeptide complex and a platelet-derived growth factor/receptor complex.

Ann Hye Ryong Shim; Heli Liu; Pamela J. Focia; Xiaoyan Chen; P. Charles Lin; Xiaolin He

Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are prototypic growth factors and receptor tyrosine kinases which have critical functions in development. We show that PDGFs share a conserved region in their prodomain sequences which can remain noncovalently associated with the mature cystine-knot growth factor domain after processing. The structure of the PDGF-A/propeptide complex reveals this conserved, hydrophobic association mode. We also present the structure of the complex between PDGF-B and the first three Ig domains of PDGFRβ, showing that two PDGF-B protomers clamp PDGFRβ at their dimerization seam. The PDGF-B:PDGFRβ interface is predominantly hydrophobic, and PDGFRs and the PDGF propeptides occupy overlapping positions on mature PDGFs, rationalizing the need of propeptides by PDGFs to cover functionally important hydrophobic surfaces during secretion. A large-scale structural organization and rearrangement is observed for PDGF-B upon receptor binding, in which the PDGF-B L1 loop, disordered in the structure of the free form, adopts a highly specific conformation to form hydrophobic interactions with the third Ig domain of PDGFRβ. Calorimetric data also shows that the membrane-proximal homotypic PDGFRα interaction, albeit required for activation, contributes negatively to ligand binding. The structural and biochemical data together offer insights into PDGF-PDGFR signaling, as well as strategies for PDGF-antagonism.


Cell | 2010

Structural Basis of Semaphorin-Plexin Recognition and Viral Mimicry from Sema7A and A39R Complexes with PlexinC1

Heli Liu; Z. Sean Juo; Ann Hye Ryong Shim; Pamela J. Focia; Xiaoyan Chen; K. Christopher Garcia; Xiaolin He

Repulsive signaling by Semaphorins and Plexins is crucial for the development and homeostasis of the nervous, immune, and cardiovascular systems. Sema7A acts as both an immune and a neural Semaphorin through PlexinC1, and A39R is a Sema7A mimic secreted by smallpox virus. We report the structures of Sema7A and A39R complexed with the Semaphorin-binding module of PlexinC1. Both structures show two PlexinC1 molecules symmetrically bridged by Semaphorin dimers, in which the Semaphorin and PlexinC1 beta propellers interact in an edge-on, orthogonal orientation. Both binding interfaces are dominated by the insertion of the Semaphorins 4c-4d loop into a deep groove in blade 3 of the PlexinC1 propeller. A39R appears to achieve Sema7A mimicry by preserving key Plexin-binding determinants seen in the mammalian Sema7A complex that have evolved to achieve higher affinity binding to the host-derived PlexinC1. The complex structures support a conserved Semaphorin-Plexin recognition mode and suggest that Plexins are activated by dimerization.


The EMBO Journal | 2007

Structural basis for stem cell factor–KIT signaling and activation of class III receptor tyrosine kinases

Heli Liu; Xiaoyan Chen; Pamela J. Focia; Xiaolin He

Stem cell factor (SCF) binds to and activates the KIT receptor, a class III receptor tyrosine kinase (RTK), to stimulate diverse processes including melanogenesis, gametogenesis and hematopoeisis. Dysregulation of KIT activation is associated with many cancers. We report a 2.5 Å crystal structure of the functional core of SCF bound to the extracellular ligand‐binding domains of KIT. The structure reveals a ‘wrapping’ SCF‐recognition mode by KIT, in which KIT adopts a bent conformation to facilitate each of its first three immunoglobulin (Ig)‐like domains to interact with SCF. Three surface epitopes on SCF, an extended loop, the B and C helices, and the N‐terminal segment, contact distinct KIT domains, with two of the epitopes undergoing large conformational changes upon receptor binding. The SCF/KIT complex reveals a unique RTK dimerization assembly, and a novel recognition mode between four‐helix bundle cytokines and Ig‐family receptors. It serves as a framework for understanding the activation mechanisms of class III RTKs.


Nature Structural & Molecular Biology | 2008

Structural basis for synaptic adhesion mediated by neuroligin-neurexin interactions

Xiaoyan Chen; Heli Liu; Ann H. R. Shim; Pamela J. Focia; Xiaolin He

The heterophilic synaptic adhesion molecules neuroligins and neurexins are essential for establishing and maintaining neuronal circuits by modulating the formation and maturation of synapses. The neuroligin-neurexin adhesion is Ca2+-dependent and regulated by alternative splicing. We report a structure of the complex at a resolution of 2.4 Å between the mouse neuroligin-1 (NL1) cholinesterase-like domain and the mouse neurexin-1β (NX1β) LNS (laminin, neurexin and sex hormone–binding globulin–like) domain. The structure revealed a delicate neuroligin-neurexin assembly mediated by a hydrophilic, Ca2+-mediated and solvent-supplemented interface, rendering it capable of being modulated by alternative splicing and other regulatory factors. Thermodynamic data supported a mechanism wherein splicing site B of NL1 acts by modulating a salt bridge at the edge of the NL1-NX1β interface. Mapping neuroligin mutations implicated in autism indicated that most such mutations are structurally destabilizing, supporting deficient neuroligin biosynthesis and processing as a common cause for this brain disorder.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Structure of macrophage colony stimulating factor bound to FMS: Diverse signaling assemblies of class III receptor tyrosine kinases

Xiaoyan Chen; Heli Liu; Pamela J. Focia; Ann Hye Ryong Shim; Xiaolin He

Macrophage colony stimulating factor (M-CSF), through binding to its receptor FMS, a class III receptor tyrosine kinase (RTK), regulates the development and function of mononuclear phagocytes, and plays important roles in innate immunity, cancer and inflammation. We report a 2.4 Å crystal structure of M-CSF bound to the first 3 domains (D1–D3) of FMS. The ligand binding mode of FMS is surprisingly different from KIT, another class III RTK, in which the major ligand-binding domain of FMS, D2, uses the CD and EF loops, but not the β-sheet on the opposite side of the Ig domain as in KIT, to bind ligand. Calorimetric data indicate that M-CSF cannot dimerize FMS without receptor-receptor interactions mediated by FMS domains D4 and D5. Consistently, the structure contains only 1 FMS-D1–D3 molecule bound to a M-CSF dimer, due to a weak, hydrophilic M-CSF:FMS interface, and probably a conformational change of the M-CSF dimer in which binding to the second site is rendered unfavorable by FMS binding at the first site. The partial, intermediate complex suggests that FMS may be activated in two steps, with the initial engagement step distinct from the subsequent dimerization/activation step. Hence, the formation of signaling class III RTK complexes can be diverse, engaging various modes of ligand recognition and various mechanistic steps for dimerizing and activating receptors.


Biochimica et Biophysica Acta | 2012

The mechanism of shared but distinct CSF-1R signaling by the non-homologous cytokines IL-34 and CSF-1.

Heli Liu; Cindy Leo; Xiaoyan Chen; Brian Wong; Lewis T. Williams; Haishan Lin; Xiaolin He

Interleukin-34 (IL-34) and colony stimulating factor-1 (CSF-1) both signal through the CSF-1R receptor tyrosine kinase, but they have no sequence homology, and their functions and signaling activities are not identical. We report the crystal structures of mouse IL-34 alone and in complex with the N-terminal three immunoglobulin-like domains (D1-D3) of mouse CSF-1R. IL-34 is structurally related to other helical hematopoietic cytokines, but contains two additional helices integrally associated with the four shared helices. The non-covalently linked IL-34 homodimer recruits two copies of CSF-1R on the sides of the helical bundles, with an overall shape similar to the CSF-1:CSF-1R complex, but the flexible linker between CSF-1R D2 and D3 allows these domains to clamp IL-34 and CSF-1 at different angles. Functional dissection of the IL-34:CSF-1R interface indicates that the hydrophobic interactions, rather than the salt bridge network, dominate the biological activity of IL-34. To degenerately recognize two ligands with completely different surfaces, CSF-1R apparently takes advantage of different subsets of a chemically inert surface that can be tuned to fit different ligand shapes. Differentiated signaling between IL-34 and CSF-1 is likely achieved by the relative thermodynamic independence of IL-34 vs. negative cooperativity of CSF-1 at the receptor-recognition sites, in combination with the difference in hydrophobicity which dictates a more stable IL-34:CSF-1R complex compared to the CSF-1:CSF-1R complex.


Journal of Biological Chemistry | 2009

Structural Characterization of the Ectodomain of a Disintegrin and Metalloproteinase-22 (ADAM22), a Neural Adhesion Receptor Instead of Metalloproteinase INSIGHTS ON ADAM FUNCTION

Heli Liu; Ann H. R. Shim; Xiaolin He

ADAMs (a disintegrin and metalloproteinases) are a family of multidomain transmembrane glycoproteins with diverse roles in physiology and diseases, with several members being drug targets for cancer and inflammation therapies. The spatial organization of the ADAM extracellular segment and its influence on the function of ADAMs have been unclear. Although most members of the ADAM family are active zinc metalloproteinases, 8 of 21 ADAMs lack functional metalloproteinase domains and are implicated in protein-protein interactions instead of membrane protein ectodomain shedding. One of such non-proteinase ADAMs, ADAM22, acts as a receptor on the surface of the postsynaptic neuron to regulate synaptic signal transmission. The crystal structure of the full ectodomain of mature human ADAM22 shows that it is a compact four-leaf clover with the metalloproteinase-like domain held in the concave face of a rigid module formed by the disintegrin, cysteine-rich, and epidermal growth factor-like domains. The loss of metalloproteinase activity is ensured by the absence of critical catalytic residues, the filling of the substrate groove, and the steric hindrance by the cysteine-rich domain. The structure, combined with calorimetric experiments, suggests distinct roles of three putative calcium ions bound to ADAM22, with one in the metalloproteinase-like domain being regulatory and two in the disintegrin domain being structural. The metalloproteinase-like domain contacts the rest of ADAM22 with discontinuous, hydrophilic, and poorly complemented interactions, suggesting the possibility of modular movement of ADAM22 and other ADAMs. The ADAM22 structure provides a framework for understanding how different ADAMs exert their adhesive function and shedding activities.


Journal of Biological Chemistry | 2011

Homophilic Adhesion Mechanism of Neurofascin, a Member of the L1 Family of Neural Cell Adhesion Molecules

Heli Liu; Pamela J. Focia; Xiaolin He

The L1 family neural cell adhesion molecules play key roles in specifying the formation and remodeling of the neural network, but their homophilic interaction that mediates adhesion is not well understood. We report two crystal structures of a dimeric form of the headpiece of neurofascin, an L1 family member. The four N-terminal Ig-like domains of neurofascin form a horseshoe shape, akin to several other immunoglobulin superfamily cell adhesion molecules such as hemolin, axonin, and Dscam. The neurofascin dimer, captured in two crystal forms with independent packing patterns, reveals a pair of horseshoes in trans-synaptic adhesion mode. The adhesion interaction is mediated mostly by the second Ig-like domain, which features an intermolecular β-sheet formed by the joining of two individual GFC β-sheets and a large but loosely packed hydrophobic cluster. Mutagenesis combined with gel filtration assays suggested that the side chain hydrogen bonds at the intermolecular β-sheet are essential for the homophilic interaction and that the residues at the hydrophobic cluster play supplementary roles. Our structures reveal a conserved homophilic adhesion mode for the L1 family and also shed light on how the pathological mutations of L1 affect its structure and function.


Journal of Biological Chemistry | 2014

Evidence for Follicle-stimulating Hormone Receptor as a Functional Trimer.

Xuliang Jiang; David Fischer; Xiaoyan Chen; Sean D. McKenna; Heli Liu; Venkataraman Sriraman; Henry N. Yu; Andreas Goutopoulos; Steve Arkinstall; Xiaolin He

Background: A carbohydrate of follicle-stimulating hormone (FSH) has been proposed to sterically block other FSH molecules from binding to the putative receptor (FSHR) trimer. Results: FSH increases its receptor binding by 3-fold when the steric hindrance is removed. Conclusion: FSHR forms a functional trimer. Significance: This knowledge may improve designs of therapeutic drugs targeting FSHR. Follicle-stimulating hormone receptor (FSHR), a G-protein coupled receptor, is an important drug target in the development of novel therapeutics for reproductive indications. The FSHR extracellular domains were observed in the crystal structure as a trimer, which enabled us to propose a novel model for the receptor activation mechanism. The model predicts that FSHR binds Asnα52-deglycosylated FSH at a 3-fold higher capacity than fully glycosylated FSH. It also predicts that, upon dissociation of the FSHR trimer into monomers, the binding of glycosylated FSH, but not deglycosylated FSH, would increase 3-fold, and that the dissociated monomers would in turn enhance FSHR binding and signaling activities by 3-fold. This study presents evidence confirming these predictions and provides crystallographic and mutagenesis data supporting the proposed model. The model also provides a mechanistic explanation to the agonist and antagonist activities of thyroid-stimulating hormone receptor autoantibodies. We conclude that FSHR exists as a functional trimer.

Collaboration


Dive into the Heli Liu's collaboration.

Top Co-Authors

Avatar

Xiaolin He

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Xiaoyan Chen

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge