Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pamela J. Focia is active.

Publication


Featured researches published by Pamela J. Focia.


Nature Structural & Molecular Biology | 2005

Structural Basis of Tea Blockade in a Model Potassium Channel

Michael J. Lenaeus; Magdalini Vamvouka; Pamela J. Focia; Adrian Gross

Potassium channels catalyze the selective transfer of potassium across the cell membrane and are essential for setting the resting potential in cells, controlling heart rate and modulating the firing pattern in neurons. Tetraethylammonium (TEA) blocks ion conduction through potassium channels in a voltage-dependent manner from both sides of the membrane. Here we show the structural basis of TEA blockade by cocrystallizing the prokaryotic potassium channel KcsA with two selective TEA analogs. TEA binding at both sites alters ion occupancy in the selectivity filter; these findings underlie the mutual destabilization and voltage-dependence of TEA blockade. We propose that TEA blocks potassium channels by acting as a potassium analog at the dehydration transition step during permeation.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Structures of a platelet-derived growth factor/propeptide complex and a platelet-derived growth factor/receptor complex.

Ann Hye Ryong Shim; Heli Liu; Pamela J. Focia; Xiaoyan Chen; P. Charles Lin; Xiaolin He

Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are prototypic growth factors and receptor tyrosine kinases which have critical functions in development. We show that PDGFs share a conserved region in their prodomain sequences which can remain noncovalently associated with the mature cystine-knot growth factor domain after processing. The structure of the PDGF-A/propeptide complex reveals this conserved, hydrophobic association mode. We also present the structure of the complex between PDGF-B and the first three Ig domains of PDGFRβ, showing that two PDGF-B protomers clamp PDGFRβ at their dimerization seam. The PDGF-B:PDGFRβ interface is predominantly hydrophobic, and PDGFRs and the PDGF propeptides occupy overlapping positions on mature PDGFs, rationalizing the need of propeptides by PDGFs to cover functionally important hydrophobic surfaces during secretion. A large-scale structural organization and rearrangement is observed for PDGF-B upon receptor binding, in which the PDGF-B L1 loop, disordered in the structure of the free form, adopts a highly specific conformation to form hydrophobic interactions with the third Ig domain of PDGFRβ. Calorimetric data also shows that the membrane-proximal homotypic PDGFRα interaction, albeit required for activation, contributes negatively to ligand binding. The structural and biochemical data together offer insights into PDGF-PDGFR signaling, as well as strategies for PDGF-antagonism.


Cell | 2010

Structural Basis of Semaphorin-Plexin Recognition and Viral Mimicry from Sema7A and A39R Complexes with PlexinC1

Heli Liu; Z. Sean Juo; Ann Hye Ryong Shim; Pamela J. Focia; Xiaoyan Chen; K. Christopher Garcia; Xiaolin He

Repulsive signaling by Semaphorins and Plexins is crucial for the development and homeostasis of the nervous, immune, and cardiovascular systems. Sema7A acts as both an immune and a neural Semaphorin through PlexinC1, and A39R is a Sema7A mimic secreted by smallpox virus. We report the structures of Sema7A and A39R complexed with the Semaphorin-binding module of PlexinC1. Both structures show two PlexinC1 molecules symmetrically bridged by Semaphorin dimers, in which the Semaphorin and PlexinC1 beta propellers interact in an edge-on, orthogonal orientation. Both binding interfaces are dominated by the insertion of the Semaphorins 4c-4d loop into a deep groove in blade 3 of the PlexinC1 propeller. A39R appears to achieve Sema7A mimicry by preserving key Plexin-binding determinants seen in the mammalian Sema7A complex that have evolved to achieve higher affinity binding to the host-derived PlexinC1. The complex structures support a conserved Semaphorin-Plexin recognition mode and suggest that Plexins are activated by dimerization.


The EMBO Journal | 2007

Structural basis for stem cell factor–KIT signaling and activation of class III receptor tyrosine kinases

Heli Liu; Xiaoyan Chen; Pamela J. Focia; Xiaolin He

Stem cell factor (SCF) binds to and activates the KIT receptor, a class III receptor tyrosine kinase (RTK), to stimulate diverse processes including melanogenesis, gametogenesis and hematopoeisis. Dysregulation of KIT activation is associated with many cancers. We report a 2.5 Å crystal structure of the functional core of SCF bound to the extracellular ligand‐binding domains of KIT. The structure reveals a ‘wrapping’ SCF‐recognition mode by KIT, in which KIT adopts a bent conformation to facilitate each of its first three immunoglobulin (Ig)‐like domains to interact with SCF. Three surface epitopes on SCF, an extended loop, the B and C helices, and the N‐terminal segment, contact distinct KIT domains, with two of the epitopes undergoing large conformational changes upon receptor binding. The SCF/KIT complex reveals a unique RTK dimerization assembly, and a novel recognition mode between four‐helix bundle cytokines and Ig‐family receptors. It serves as a framework for understanding the activation mechanisms of class III RTKs.


Structure | 2002

Structural Milestones in the Reaction Pathway of an Amide Hydrolase: Substrate, Acyl, and Product Complexes of Cephalothin with AmpC β-Lactamase

Beth M. Beadle; Indi Trehan; Pamela J. Focia; Brian K. Shoichet

Beta-lactamases hydrolyze beta-lactam antibiotics and are the leading cause of bacterial resistance to these drugs. Although beta-lactamases have been extensively studied, structures of the substrate-enzyme and product-enzyme complexes have proven elusive. Here, the structure of a mutant AmpC in complex with the beta-lactam cephalothin in its substrate and product forms was determined by X-ray crystallography to 1.53 A resolution. The acyl-enzyme intermediate between AmpC and cephalothin was determined to 2.06 A resolution. The ligand undergoes a dramatic conformational change as the reaction progresses, with the characteristic six-membered dihydrothiazine ring of cephalothin rotating by 109 degrees. These structures correspond to all three intermediates along the reaction path and provide insight into substrate recognition, catalysis, and product expulsion.


Bioorganic & Medicinal Chemistry Letters | 2003

An aminopyridazine-based inhibitor of a pro-apoptotic protein kinase attenuates hypoxia-ischemia induced acute brain injury.

Anastasia Velentza; Mark S. Wainwright; Salida Mirzoeva; Andrew M. Schumacher; Jacques Haiech; Pamela J. Focia; Martin Egli; D. Martin Watterson

Death associated protein kinase (DAPK) is a calcium and calmodulin regulated enzyme that functions early in eukaryotic programmed cell death, or apoptosis. To validate DAPK as a potential drug discovery target for acute brain injury, the first small molecule DAPK inhibitor was synthesized and tested in vivo. A single injection of the aminopyridazine-based inhibitor administered 6 h after injury attenuated brain tissue or neuronal biomarker loss measured, respectively, 1 week and 3 days later. Because aminopyridazine is a privileged structure in neuropharmacology, we determined the high-resolution crystal structure of a binary complex between the kinase domain and a molecular fragment of the DAPK inhibitor. The co-crystal structure describes a structural basis for interaction and provides a firm foundation for structure-assisted design of lead compounds with appropriate molecular properties for future drug development.


Nature Structural & Molecular Biology | 2008

Structural basis for synaptic adhesion mediated by neuroligin-neurexin interactions

Xiaoyan Chen; Heli Liu; Ann H. R. Shim; Pamela J. Focia; Xiaolin He

The heterophilic synaptic adhesion molecules neuroligins and neurexins are essential for establishing and maintaining neuronal circuits by modulating the formation and maturation of synapses. The neuroligin-neurexin adhesion is Ca2+-dependent and regulated by alternative splicing. We report a structure of the complex at a resolution of 2.4 Å between the mouse neuroligin-1 (NL1) cholinesterase-like domain and the mouse neurexin-1β (NX1β) LNS (laminin, neurexin and sex hormone–binding globulin–like) domain. The structure revealed a delicate neuroligin-neurexin assembly mediated by a hydrophilic, Ca2+-mediated and solvent-supplemented interface, rendering it capable of being modulated by alternative splicing and other regulatory factors. Thermodynamic data supported a mechanism wherein splicing site B of NL1 acts by modulating a salt bridge at the edge of the NL1-NX1β interface. Mapping neuroligin mutations implicated in autism indicated that most such mutations are structurally destabilizing, supporting deficient neuroligin biosynthesis and processing as a common cause for this brain disorder.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Structure of macrophage colony stimulating factor bound to FMS: Diverse signaling assemblies of class III receptor tyrosine kinases

Xiaoyan Chen; Heli Liu; Pamela J. Focia; Ann Hye Ryong Shim; Xiaolin He

Macrophage colony stimulating factor (M-CSF), through binding to its receptor FMS, a class III receptor tyrosine kinase (RTK), regulates the development and function of mononuclear phagocytes, and plays important roles in innate immunity, cancer and inflammation. We report a 2.4 Å crystal structure of M-CSF bound to the first 3 domains (D1–D3) of FMS. The ligand binding mode of FMS is surprisingly different from KIT, another class III RTK, in which the major ligand-binding domain of FMS, D2, uses the CD and EF loops, but not the β-sheet on the opposite side of the Ig domain as in KIT, to bind ligand. Calorimetric data indicate that M-CSF cannot dimerize FMS without receptor-receptor interactions mediated by FMS domains D4 and D5. Consistently, the structure contains only 1 FMS-D1–D3 molecule bound to a M-CSF dimer, due to a weak, hydrophilic M-CSF:FMS interface, and probably a conformational change of the M-CSF dimer in which binding to the second site is rendered unfavorable by FMS binding at the first site. The partial, intermediate complex suggests that FMS may be activated in two steps, with the initial engagement step distinct from the subsequent dimerization/activation step. Hence, the formation of signaling class III RTK complexes can be diverse, engaging various modes of ligand recognition and various mechanistic steps for dimerizing and activating receptors.


Journal of Biological Chemistry | 2011

Homophilic Adhesion Mechanism of Neurofascin, a Member of the L1 Family of Neural Cell Adhesion Molecules

Heli Liu; Pamela J. Focia; Xiaolin He

The L1 family neural cell adhesion molecules play key roles in specifying the formation and remodeling of the neural network, but their homophilic interaction that mediates adhesion is not well understood. We report two crystal structures of a dimeric form of the headpiece of neurofascin, an L1 family member. The four N-terminal Ig-like domains of neurofascin form a horseshoe shape, akin to several other immunoglobulin superfamily cell adhesion molecules such as hemolin, axonin, and Dscam. The neurofascin dimer, captured in two crystal forms with independent packing patterns, reveals a pair of horseshoes in trans-synaptic adhesion mode. The adhesion interaction is mediated mostly by the second Ig-like domain, which features an intermolecular β-sheet formed by the joining of two individual GFC β-sheets and a large but loosely packed hydrophobic cluster. Mutagenesis combined with gel filtration assays suggested that the side chain hydrogen bonds at the intermolecular β-sheet are essential for the homophilic interaction and that the residues at the hydrophobic cluster play supplementary roles. Our structures reveal a conserved homophilic adhesion mode for the L1 family and also shed light on how the pathological mutations of L1 affect its structure and function.


Journal of Molecular Biology | 2002

Structural basis for mobility in the 1.1 A crystal structure of the NG domain of Thermus aquaticus Ffh.

Ursula D. Ramirez; George Minasov; Pamela J. Focia; Robert M. Stroud; Peter Walter; Peter Kuhn; Douglas M. Freymann

The NG domain of the prokaryotic signal recognition protein Ffh is a two-domain GTPase that comprises part of the prokaryotic signal recognition particle (SRP) that functions in co-translational targeting of proteins to the membrane. The interface between the N and G domains includes two highly conserved sequence motifs and is adjacent in sequence and structure to one of the conserved GTPase signature motifs. Previous structural studies have shown that the relative orientation of the two domains is dynamic. The N domain of Ffh has been proposed to function in regulating the nucleotide-binding interactions of the G domain. However, biochemical studies suggest a more complex role for the domain in integrating communication between signal sequence recognition and interaction with receptor. Here, we report the structure of the apo NG GTPase of Ffh from Thermus aquaticus refined at 1.10 A resolution. Although the G domain is very well ordered in this structure, the N domain is less well ordered, reflecting the dynamic relationship between the two domains previously inferred. We demonstrate that the anisotropic displacement parameters directly visualize the underlying mobility between the two domains, and present a detailed structural analysis of the packing of the residues, including the critical alpha4 helix, that comprise the interface. Our data allows us to propose a structural explanation for the functional significance of sequence elements conserved at the N/G interface.

Collaboration


Dive into the Pamela J. Focia's collaboration.

Top Co-Authors

Avatar

Douglas M. Freymann

Nebraska Wesleyan University

View shared research outputs
Top Co-Authors

Avatar

Ann E. Eakin

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Sydney P. Craig

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Heli Liu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah E. Rice

University of California

View shared research outputs
Top Co-Authors

Avatar

Xiaolin He

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Xiaoyan Chen

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge