Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helmut Bölcskei is active.

Publication


Featured researches published by Helmut Bölcskei.


IEEE Journal on Selected Areas in Communications | 2004

Fading relay channels: performance limits and space-time signal design

Rohit U. Nabar; Helmut Bölcskei; Felix W. Kneubühler

Cooperative diversity is a transmission technique, where multiple terminals pool their resources to form a virtual antenna array that realizes spatial diversity gain in a distributed fashion. In this paper, we examine the basic building block of cooperative diversity systems, a simple fading relay channel where the source, destination, and relay terminals are each equipped with single antenna transceivers. We consider three different time-division multiple-access-based cooperative protocols that vary the degree of broadcasting and receive collision. The relay terminal operates in either the amplify-and-forward (AF) or decode-and-forward (DF) modes. For each protocol, we study the ergodic and outage capacity behavior (assuming Gaussian code books) under the AF and DF modes of relaying. We analyze the spatial diversity performance of the various protocols and find that full spatial diversity (second-order in this case) is achieved by certain protocols provided that appropriate power control is employed. Our analysis unifies previous results reported in the literature and establishes the superiority (both from a capacity, as well as a diversity point-of-view) of a new protocol proposed in this paper. The second part of the paper is devoted to (distributed) space-time code design for fading relay channels operating in the AF mode. We show that the corresponding code design criteria consist of the traditional rank and determinant criteria for the case of colocated antennas, as well as appropriate power control rules. Consequently space-time codes designed for the case of colocated multiantenna channels can be used to realize cooperative diversity provided that appropriate power control is employed.


Proceedings of the IEEE | 2004

An overview of MIMO communications - a key to gigabit wireless

Arogyaswami Paulraj; Dhananjay Ashok Gore; Rohit U. Nabar; Helmut Bölcskei

High data rate wireless communications, nearing 1 Gb/s transmission rates, is of interest in emerging wireless local area networks and home audio/visual networks. Designing very high speed wireless links that offer good quality-of-service and range capability in non-line-of-sight (NLOS) environments constitutes a significant research and engineering challenge. Ignoring fading in NLOS environments, we can, in principle, meet the 1 Gb/s data rate requirement with a single-transmit single-receive antenna wireless system if the product of bandwidth (measured in hertz) and spectral efficiency (measured in bits per second per hertz) is equal to 10/sup 9/. A variety of cost, technology and regulatory constraints make such a brute force solution unattractive, if not impossible. The use of multiple antennas at transmitter and receiver, popularly known as multiple-input multiple-output (MIMO) wireless, is an emerging cost-effective technology that offers substantial leverages in making 1 Gb/s wireless links a reality. The paper provides an overview of MIMO wireless technology covering channel models, performance limits, coding, and transceiver design.


IEEE Transactions on Communications | 2002

On the capacity of OFDM-based spatial multiplexing systems

Helmut Bölcskei; David Gesbert; Arogyaswami Paulraj

This paper deals with the capacity behavior of wireless orthogonal frequency-division multiplexing (OFDM)-based spatial multiplexing systems in broad-band fading environments for the case where the channel is unknown at the transmitter and perfectly known at the receiver. Introducing a physically motivated multiple-input multiple-output (MIMO) broad-band fading channel model, we study the influence of physical parameters such as the amount of delay spread, cluster angle spread, and total angle spread, and system parameters such as the number of antennas and antenna spacing on ergodic capacity and outage capacity. We find that, in the MIMO case, unlike the single-input single-output (SISO) case, delay spread channels may provide advantages over flat fading channels not only in terms of outage capacity but also in terms of ergodic capacity. Therefore, MIMO delay spread channels will in general provide both higher diversity gain and higher multiplexing gain than MIMO flat fading channels


IEEE Transactions on Signal Processing | 2010

Block-Sparse Signals: Uncertainty Relations and Efficient Recovery

Yonina C. Eldar; Patrick Kuppinger; Helmut Bölcskei

We consider efficient methods for the recovery of block-sparse signals-i.e., sparse signals that have nonzero entries occurring in clusters-from an underdetermined system of linear equations. An uncertainty relation for block-sparse signals is derived, based on a block-coherence measure, which we introduce. We then show that a block-version of the orthogonal matching pursuit algorithm recovers block -sparse signals in no more than steps if the block-coherence is sufficiently small. The same condition on block-coherence is shown to guarantee successful recovery through a mixed -optimization approach. This complements previous recovery results for the block-sparse case which relied on small block-restricted isometry constants. The significance of the results presented in this paper lies in the fact that making explicit use of block-sparsity can provably yield better reconstruction properties than treating the signal as being sparse in the conventional sense, thereby ignoring the additional structure in the problem.


european solid-state circuits conference | 2005

VLSI implementation of MIMO detection using the sphere decoding algorithm

Andreas Burg; Moritz Borgmann; Markus Wenk; Martin Zellweger; Wolfgang Fichtner; Helmut Bölcskei

Multiple-input multiple-output (MIMO) techniques are a key enabling technology for high-rate wireless communications. This paper discusses two ASIC implementations of MIMO sphere decoders. The first ASIC attains maximum-likelihood performance with an average throughput of 73 Mb/s at a signal-to-noise ratio (SNR) of 20 dB; the second ASIC shows only a negligible bit-error-rate degradation and achieves a throughput of 170 Mb/s at the same SNR. The three key contributing factors to high throughput and low complexity are: depth-first tree traversal with radius reduction, implemented in a one-node-per-cycle architecture, the use of the /spl lscr//sup /spl infin//-instead of /spl lscr//sup 2/-norm, and, finally, the efficient implementation of the enumeration approach recently proposed in . The resulting ASICs currently rank among the fastest reported MIMO detector implementations.


wireless communications and networking conference | 2000

Space-frequency coded broadband OFDM systems

Helmut Bölcskei; Arogyaswami Paulraj

Space-time coding for fading channels is a communication technique that realizes the diversity benefits of multiple transmit antennas. Previous work in this area has focused on the narrowband flat fading case where spatial diversity only is available. We investigate the use of space-time coding in OFDM-based broadband systems where both spatial and frequency diversity are available. We consider a strategy which basically consists of coding across OFDM tones and is therefore called space-frequency coding. For a spatial broadband channel model taking into account physical propagation parameters and antenna spacing, we derive the design criteria for space-frequency codes and we show that space-time codes designed to achieve full spatial diversity in the narrowband case will in general not achieve full space-frequency diversity. Specifically, we show that the Alamouti (see IEEE J. Sel. Areas Comm., vol.16, p.1451-58, 1998) scheme across tones fails to exploit frequency diversity. For a given set of propagation parameters and given antenna spacing, we establish the maximum achievable diversity order. Finally, we provide simulation results studying the influence of delay spread, propagation parameters, and antenna spacing on the performance of space-frequency codes.


IEEE Transactions on Communications | 2001

Blind estimation of symbol timing and carrier frequency offset in wireless OFDM systems

Helmut Bölcskei

Orthogonal frequency-division multiplexing (OFDM) systems are highly sensitive to synchronization errors. We introduce an algorithm for the blind estimation of symbol timing and carrier frequency offset in wireless OFDM systems. The proposed estimator is an extension of the Gini-Giannakis (see IEEE Trans. Commun., vol.46, p.400-411, 1998) estimator for single-carrier systems. It exploits the cyclostationarity of OFDM signals and relies on second-order statistics only. Our method can be applied to pulse shaping OFDM systems with arbitrary time-frequency guard regions, OFDM based on offset quadrature amplitude modulation, and biorthogonal frequency-division multiplexing systems. We furthermore propose the use of different subcarrier transmit powers (subcarrier weighting) and periodic transmitter precoding to achieve a carrier frequency acquisition range of the entire bandwidth of the OFDM signal, and a symbol timing acquisition range of arbitrary length. Finally, we provide simulation results demonstrating the performance of the new estimator.


asilomar conference on signals, systems and computers | 2008

Soft-output sphere decoding: algorithms and VLSI implementation

Christoph Studer; Andreas Burg; Helmut Bölcskei

Multiple-input multiple-output (MIMO) detection algorithms providing soft information for a subsequent channel decoder pose significant implementation challenges due to their high computational complexity. In this paper, we show how sphere decoding can be used as an efficient tool to implement soft-output MIMO detection with flexible trade-offs between computational complexity and (error rate) performance. In particular, we provide VLSI implementation results which demonstrate that single tree-search, sorted QR-decomposition, channel matrix regularization, log-likelihood ratio clipping, and imposing runtime constraints are the key ingredients for realizing soft-output MIMO detectors with near max-log performance at a chip area that is only 58% higher than that of the best-known hard-output sphere decoder VLSI implementation.


IEEE Wireless Communications | 2006

MIMO-OFDM wireless systems: basics, perspectives, and challenges

Helmut Bölcskei

Multiple-input multiple-output (MIMO) wireless technology in combination with orthogonal frequency division multiplexing (MIMO-OFDM) is an attractive air-interface solution for next-generation wireless local area networks (WLANs), wireless metropolitan area networks (WMANs), and fourth-generation mobile cellular wireless systems. This article provides an overview of the basics of MIMO-OFDM technology and focuses on space-frequency signaling, receiver design, multiuser systems, and hardware implementation aspects. We conclude with a discussion of relevant open areas for further research


IEEE Journal on Selected Areas in Communications | 2003

Impact of the propagation environment on the performance of space-frequency coded MIMO-OFDM

Helmut Bölcskei; Moritz Borgmann; Arogyaswami Paulraj

Previous work on space-frequency coded multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) has been restricted to idealistic propagation conditions. In this paper, using a broadband MIMO channel model taking into account Ricean K-factor, transmit and receive angle spread, and antenna spacing, we study the impact of the propagation environment on the performance of space-frequency coded MIMO-OFDM. For a given space-frequency code, we quantify the achievable diversity order and coding gain as a function of the propagation parameters. We find that while the presence of spatial receive correlation affects all space-frequency codes equally, spatial fading correlation at the transmit array can result in widely varying performance losses. High-rate space-frequency codes such as spatial multiplexing are typically significantly more affected by transmit correlation than low-rate codes such as space-frequency block codes. We show that in the MIMO Ricean case the presence of frequency-selectivity typically results in improved performance compared to the frequency-flat case.

Collaboration


Dive into the Helmut Bölcskei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franz Hlawatsch

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Durisi

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Rohit U. Nabar

Marvell Technology Group

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Burg

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge