Helmut Tschäpe
Robert Koch Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helmut Tschäpe.
Microbes and Infection | 2001
Wolfgang Rabsch; Helmut Tschäpe; Andreas J. Bäumler
Two major changes in the epidemiology of non-typhoidal salmonellosis have occurred during the second half of the 20th century. First, Salmonella typhimurium strains resistant to multiple antibiotics have emerged and spread within populations of food animals. Secondly, Salmonella enteritidis has emerged as a major egg-associated pathogen. This article reviews available data on the origins of the human epidemics.
Applied and Environmental Microbiology | 2007
Martina Bielaszewska; Rita Prager; Robin Köck; Alexander Mellmann; Wenlan Zhang; Helmut Tschäpe; Phillip I. Tarr; Helge Karch
ABSTRACT Escherichia coli serogroup O26 consists of enterohemorrhagic E. coli (EHEC) and atypical enteropathogenic E. coli (aEPEC). The former produces Shiga toxins (Stx), major determinants of EHEC pathogenicity, encoded by bacteriophages; the latter is Stx negative. We have isolated EHEC O26 from patient stools early in illness and aEPEC O26 from stools later in illness, and vice versa. Intrapatient EHEC and aEPEC isolates had quite similar pulsed-field gel electrophoresis (PFGE) patterns, suggesting that they might have arisen by conversion between the EHEC and aEPEC pathotypes during infection. To test this hypothesis, we asked whether EHEC O26 can lose stx genes and whether aEPEC O26 can be lysogenized with Stx-encoding phages from EHEC O26 in vitro. The stx2 loss associated with the loss of Stx2-encoding phages occurred in 10% to 14% of colonies tested. Conversely, Stx2- and, to a lesser extent, Stx1-encoding bacteriophages from EHEC O26 lysogenized aEPEC O26 isolates, converting them to EHEC strains. In the lysogens and EHEC O26 donors, Stx2-converting bacteriophages integrated in yecE or wrbA. The loss and gain of Stx-converting bacteriophages diversifies PFGE patterns; this parallels findings of similar but not identical PFGE patterns in the intrapatient EHEC and aEPEC O26 isolates. EHEC O26 and aEPEC O26 thus exist as a dynamic system whose members undergo ephemeral interconversions via loss and gain of Stx-encoding phages to yield different pathotypes. The suggested occurrence of this process in the human intestine has diagnostic, clinical, epidemiological, and evolutionary implications.
BMC Infectious Diseases | 2005
Dirk Werber; Johannes Dreesman; Fabian Feil; Ulrich van Treeck; Gerhard Fell; Steen Ethelberg; Anja M. Hauri; Peter Roggentin; Rita Prager; I. S.T. Fisher; Susanne C. Behnke; Edda Bartelt; Ekkehard Weise; Andrea Ellis; Anja Siitonen; Yvonne Andersson; Helmut Tschäpe; Michael H Kramer; Andrea Ammon
BackgroundThis report describes a large international chocolate-associated Salmonella outbreak originating from Germany.MethodsWe conducted epidemiologic investigations including a case-control study, and food safety investigations. Salmonella (S.) Oranienburg isolates were subtyped by the use of pulsed-field gel electrophoresis (PFGE).ResultsFrom 1 October 2001 through 24 March 2002, an estimated excess of 439 S. Oranienburg notifications was registered in Germany. Simultaneously, an increase in S. Oranienburg infections was noted in other European countries in the Enter-net surveillance network. In a multistate matched case-control study in Germany, daily consumption of chocolate (matched odds ratio [MOR]: 4.8; 95% confidence interval [CI]: 1.3–26.5), having shopped at a large chain of discount grocery stores (MOR: 4.2; CI: 1.2–23.0), and consumption of chocolate purchased there (MOR: 5.0; CI: 1.1–47.0) were associated with illness. Subsequently, two brands from the same company, one exclusively produced for that chain, tested positive for S. Oranienburg. In two other European countries and in Canada chocolate from company A was ascertained that also contained S. Oranienburg. Isolates from humans and from chocolates had indistinguishable PFGE profiles. No source or point of contamination was identified. Epidemiological identification of chocolate as a vehicle of infections required two months, and was facilitated by proxy measures.ConclusionsDespite the use of improved production technologies, the chocolate industry continues to carry a small risk of manufacturing Salmonella-containing products. Particularly in diffuse outbreak-settings, clear associations with surrogates of exposure should suffice to trigger public health action. Networks such as Enter-net have become invaluable for facilitating rapid and appropriate management of international outbreaks.
Applied and Environmental Microbiology | 2007
Daniel Muller; Lilo Greune; Gerhard Heusipp; Helge Karch; Angelika Fruth; Helmut Tschäpe; M. Alexander Schmidt
ABSTRACT Intestinal pathogenic Escherichia coli represents a global health problem for mammals, including humans. At present, diarrheagenic E. coli bacteria are grouped into seven major pathotypes that differ in their virulence factor profiles, severity of clinical manifestations, and prognosis. In this study, we developed and evaluated a one-step multiplex PCR (MPCR) for the straightforward differential identification of intestinal pathotypes of E. coli. The specificity of this novel MPCR was validated by using a subset of reference strains and further confirmed by PCR-independent pheno- and genotypic characterization. Moreover, we tested 246 clinical E. coli isolates derived from diarrhea patients from several distinct geographic regions. Interestingly, besides strains belonging to the defined and well-described pathotypes, we identified five unconventional strains expressing intermediate virulence factor profiles. These strains have been further characterized and appear to represent intermediate strains carrying genes and expressing factors associated with enteropathogenic E. coli, Shiga toxin-producing E. coli, enterotoxigenic E. coli, and enteroaggregative E. coli alike. These strains represent further examples of the extraordinary plasticity of the E. coli genome. Moreover, this implies that the important identification of specific pathotypes has to be based on a broad matrix of indicator genes. In addition, the presence of intermediate strains needs to be accounted for.
Epidemiology and Infection | 1995
Helmut Tschäpe; Rita Prager; W. Streckel; Angelika Fruth; Erhard Tietze; G. Böhme
Abstract A summer outbreak of severe gastroenteritis followed by haemolytic uraemic syndrome (HUS) and thrombotic thrombocytopenic purpura in a nursery school and kindergarten is described. Sandwiches prepared with green butter made with contaminated parsley were the likely vehicle of infection. The parsley originated from an organic garden in which manure of pig origin was used instead of artificial fertilizers. Clonally identical verotoxinogenic Citrobacter freundii were found as causative agents of HUS and gastroenteritis and were also detected on the parsley.
Journal of Clinical Microbiology | 2003
Alexander W. Friedrich; Julia Borell; Martina Bielaszewska; Angelika Fruth; Helmut Tschäpe; Helge Karch
ABSTRACT The distribution of the stx1c allele among Shiga toxin (Stx)-producing Escherichia coli (STEC) and the virulence characteristics of stx1c-harboring STEC are unknown. In this study, we identified stx1c in 76 (54.3%) of 140 eae-negative, but in none of 155 eae-positive, human STEC isolates (P < 0.000001). The 76 stx1c-harboring E. coli isolates belonged to 22 serotypes, and each produced Stx1c as demonstrated by latex agglutination. Characterization of putative virulence factors demonstrated the presence of the locus of proteolysis activity (LPA) and the high-pathogenicity island in 65.8 and 21.1%, respectively, of the 76 Stx1c-producing E. coli isolates. Moreover, all but three of these strains contained saa, the gene encoding an STEC autoagglutinating adhesin. The virulence profiles of Stx1c-producing E. coli isolates were mostly serotype independent and heterogeneous. This enabled us to subtype the isolates within the same serotype. The individuals infected with Stx1c-producing E. coli strains were between 3 months and 72 years old (median age, 23.5 years) and usually had uncomplicated diarrhea or were asymptomatic. We conclude that Stx1c-producing E. coli strains represent a significant subset of eae-negative human STEC isolates, which belong to various serotypes and frequently possess LPA and saa as their putative virulence factors. The phenotypic and molecular characteristics determined in this study allow the subtyping of Stx1c-producing STEC in epidemiological and clinical studies.
International Journal of Medical Microbiology | 2003
Ute Römling; Werner Bokranz; Wolfgang Rabsch; Xhavit Zogaj; Manfred Nimtz; Helmut Tschäpe
Multicellular behavior in Salmonella Typhimurium ATCC14028 called the rdar morphotype is characterized by the expression of the extracellular matrix components cellulose and curli fimbriae. Over 90% of S. Typhimurium and S. Enteritidis strains from human disease, food and animals expressed the rdar morphotype at 28 degrees C. Regulation of the rdar morphotype occurred via the response regulator ompR, which activated transcription of csgD required for production of cellulose and curli fimbriae. Serovar-specific regulation of csgD required rpoS in S. Typhimurium, but was partially independent of rpoS in S. Enteritidis. Rarely, strain-specific temperature-deregulated expression of the rdar morphotype was observed. The host-restricted serovars S. Typhimurium var. Copenhagen phage type DT2 and DT99, Salmonella Typhi and Salmonella Choleraesuis did not express the rdar morphotype, while in Salmonella Gallinarum cellulose expression at 37 degrees C was seen in some strains. Therefore, the expression pattern of the rdar morphotype is serovar specific and correlates with a disease phenotype breaching the intestinal epithelial cell lining.
Journal of Bacteriology | 2001
Susanne Mirold; Kristin Ehrbar; Astrid Weissmüller; Rita Prager; Helmut Tschäpe; Holger Rüssmann; Wolf-Dietrich Hardt
Salmonella spp. possess a conserved type III secretion system encoded within the pathogenicity island 1 (SPI1; centisome 63), which mediates translocation of effector proteins into the host cell cytosol to trigger responses such as bacterial internalization. Several translocated effector proteins are encoded in other regions of the Salmonella chromosome. It remains unclear how this complex chromosomal arrangement of genes for the type III apparatus and the effector proteins emerged and how the different effector proteins cooperate to mediate virulence. By Southern blotting, PCR, and phylogenetic analyses of highly diverse Salmonella spp., we show here that effector protein genes located in the core of SPI1 are present in all Salmonella lineages. Surprisingly, the same holds true for several effector protein genes located in distant regions of the Salmonella chromosome, namely, sopB (SPI5, centisome 20), sopD (centisome 64), and sopE2 (centisomes 40 to 42). Our data demonstrate that sopB, sopD, and sopE2, along with SPI1, were already present in the last common ancestor of all contemporary Salmonella spp. Analysis of Salmonella mutants revealed that host cell invasion is mediated by SopB, SopE2, and, in the case of Salmonella enterica serovar Typhimurium SL1344, by SopE: a sopB sopE sopE2-deficient triple mutant was incapable of inducing membrane ruffling and was >100-fold attenuated in host cell invasion. We conclude that host cell invasion emerged early during evolution by acquisition of a mosaic of genetic elements (SPI1 itself, SPI5 [sopB], and sopE2) and that the last common ancestor of all contemporary Salmonella spp. was probably already invasive.
Clinical Infectious Diseases | 2005
Alexander Mellmann; Martina Bielaszewska; Lothar Bernd Zimmerhackl; Rita Prager; Dag Harmsen; Helmut Tschäpe; Helge Karch
BACKGROUND Enterohemorrhagic Escherichia coli (EHEC) cause most cases of the hemolytic uremic syndrome (HUS) worldwide. To investigate genetic changes in EHEC during the course of human infection, we analyzed consecutive stool samples and shed isolates from patients with HUS, focusing on the genes encoding Shiga toxin (stx) and intimin (eae). METHODS Sequential stool samples from 210 patients with HUS were investigated for the persistence of E. coli strains harboring stx and/or eae. Initial stool samples were collected during the acute phase of HUS, and subsequent stool samples were collected 3-16 days later (median interval, 8 days). RESULTS Organisms that were stx and eae positive (stx+/eae+ strains; n=137) or stx negative and eae positive (stx-/eae+ strains; n=5) were detected in the initial stool samples from 142 patients. Subsequently, the proportion of those who shed stx+/eae+ strains decreased to 13 of 210 patients, whereas the proportion of those who shed strains that were stx-/eae+ increased to 12 of 210 patients. Seven patients who initially excreted strains that were stx+/eae+ shed, at second analysis, stx-/eae+ strains of the same serotypes; they had no free fecal Shiga toxin at follow-up. Comparison of the initial and follow-up isolates from these patients with use of molecular-epidemiological methods revealed loss of stx genes and genomic rearrangement. CONCLUSIONS We demonstrate the loss of a critical bacterial virulence factor from pathogens during very brief intervals in the human host. These genetic changes have evolutionary, diagnostic, and clinical implications. Generation of stx- mutants might contribute to subclonal evolution and evolutionary success.
Infection and Immunity | 2004
Martina Bielaszewska; Marina Fell; Lilo Greune; Rita Prager; Angelika Fruth; Helmut Tschäpe; M. Alexander Schmidt; Helge Karch
ABSTRACT We identified cytolethal distending toxin and its gene (cdt) in 17 of 340 non-O157 Shiga toxin-producing Escherichia coli (STEC) strains (serotypes O73:H18, O91:H21, O113:H21, and O153:H18), all of which were eae negative. cdt is either chromosomal and homologous to cdt-V (serotypes O73:H18, O91:H21, and O113:H21) or plasmidborne and identical to cdt-III (serotype O153:H18). Among eae-negative STEC, cdt was associated with disease (P = 0.003).