Helvécio Costa Menezes
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helvécio Costa Menezes.
Journal of Chromatography A | 2011
Helvécio Costa Menezes; Zenilda de Lourdes Cardeal
Polycyclic aromatic hydrocarbons (PAH) from ambient air particulate matter (PM) were analyzed by a new method that utilized direct immersion (DI) and cold fiber (CF) SPME-GC/MS. Experimental design was used to optimize the conditions of extraction by DI-CF-SPME with a 100μm polydimethylsiloxane (PDMS) fiber. The optimal conditions included a 5min equilibration at 70°C time in an ultrasonic bath with an extraction time of 60min. The optimized method was validated by the analysis of a NIST standard reference material (SRM), 1649b urban dust. The results obtained were in good agreement with certified values. PAH recoveries for reference materials were between 88 and 98%, with a relative standard deviation ranging from 5 to 17%. Detection limits (LOD) varied from 0.02 to 1.16ng and the quantification limits (LOQ) varied from 0.05 to 3.86ng. The optimized and validated method was applied to the determination of PAH from real particulate matter (PM10) and total suspended particulate (TPS) samples collected on quartz fiber filters with high volume samplers.
Analytica Chimica Acta | 2015
Helvécio Costa Menezes; Stella Maris Resende de Barcelos; Damiana Freire Dias Macedo; Aluir D. Purceno; Bruno Fernades Machado; Ana Paula C. Teixeira; Rochel Monteiro Lago; Philippe Serp; Zenilda de Lourdes Cardeal
This paper describes a new, efficient and versatile method for the sampling and preconcentration of PAH in environmental water matrices using special hybrid magnetic carbon nanotubes. These N-doped amphiphilic CNT can be easily dispersed in any aqueous matrix due to the N containing hydrophilic part and at the same time show high efficiency for the adsorption of different PAH contaminants due to the very hydrophobic surface. After adsorption, the CNT can be easily removed from the medium by a simple magnetic separation. GC/MS analyses showed that the CNT method is more efficient than the use of polydimethylsiloxane (PDMS) with much lower solvent consumption, technical simplicity and time, showing good linearity (range 0.18-80.00 μg L(-1)) and determination coefficient (R(2) > 0.9810). The limit of detection ranged from 0.05 to 0.42 μg L(-1) with limit of quantification from 0.18 to 1.40 μg L(-1). Recovery (n=9) ranged from 80.50 ± 10 to 105.40 ± 12%. Intraday precision (RSD, n=9) ranged from 1.91 to 9.01%, whereas inter day precision (RSD, n=9) ranged from 7.02 to 17.94%. The method was applied to the analyses of PAH in four lake water samples collected in Belo Horizonte City, Brazil.
Critical Reviews in Environmental Science and Technology | 2013
Helvécio Costa Menezes; Leiliane Coelho Andre Amorim; Zenilda de Lourdes Cardeal
Volatile organic compounds (VOC) are the total organic compounds that contribute to photochemical ozone formation. They have a vapor pressure greater than 0.013 kPa at 298 K (according to the American Society for Testing and Materials (1996)), 0.01 kPa at 293 K (according to the European Union (1999)), or 10 Pa at 298 K (according to the U.S. Environmental Protection Agency (1999)), with a lower boiling point limit of 50–100°C and an upper boiling point limit of 240–260°C. VOC include countless potentially hazardous substances released to the outdoor or indoor environment. The prevention or reduction of exposure to VOC in the air requires qualitative and quantitative analysis of these chemical agents. A correct assessment of human exposure to VOC requires appropriate and efficient methods of sampling and analysis. The authors present a survey of VOC definitions, an analytical discussion of the necessity and viability of exposure studies, the principal VOC studied, and a critical revision of methods of sampling and analyses.
Journal of Chromatography B | 2013
Maria José Nunes de Paiva; Helvécio Costa Menezes; Paulo Pereira Christo; Rodrigo R Resende; Zenilda de Lourdes Cardeal
The determination of the concentrations of l-amino acids in cerebrospinal fluid (CSF) has been used to gain biochemical insight into central nervous system disorders. This paper describes a microwave-assisted derivatization (MAD) method using N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA) as a derivatizing agent for determining the concentrations of l-amino acids in human CSF by gas chromatography with mass spectrometry (GC/MS). The experimental design used to optimize the conditions showed that the optimal derivatization time was 3min with a microwave power of 210W. The method showed good performance for the validation parameters. The sensitivity was very good, with limits of detection (LODs) ranging from 0.01μmolL(-1) to 4.24μmolL(-1) and limits of quantification (LOQs) ranging from 0.02 to 7.07μmolL(-1). The precision, measured using the relative standard deviation (RSD), ranged from 4.12 to 15.59% for intra-day analyses and from 6.36 to 18.71% for inter-day analyses. The coefficients of determination (R(2)) were above 0.990 for all amino acids. The optimized and validated method was applied to the determination of amino acid concentrations in human CSF.
Journal of Chemical Neuroanatomy | 2014
Mauro Cunha Xavier Pinto; Maria José Nunes de Paiva; Onésia Cristina Oliveira-Lima; Helvécio Costa Menezes; Zenilda de Lourdes Cardeal; Marcus V. Gomez; Rodrigo R Resende; Renato Santiago Gomez
The analysis of amino acid levels is crucial for neuroscience studies because of the roles of these molecules as neurotransmitters and their influence on behavior. The present study describes the distribution and levels of 16 amino acids (alanine, asparagine, aspartic acid, cysteine, glycine, glutamic acid, isoleucine, leucine, lysine, methionine, phenylalanine, proline, sarcosine, serine, valine, and threonine) in brain tissues (prefrontal cortex, striatum, hippocampus and cerebellum) and the serum. Neurochemical analysis was performed on Wistar rats and C57BL/6 mice using an efficient method for extraction, a fast microwave-assisted derivatization and gas chromatography-mass spectrometry analysis. The amino acid concentration varied across brain regions for 14 of the 16 analyzed molecules, with detection limits ranging from 0.02±0.005μmolL(-1) to 7.07±0.05μmolL(-1). In rats, the concentrations of alanine, glycine, methionine, serine and threonine were higher in prefrontal cortex than in other areas, whereas in mice, the concentrations of glutamic acid, leucine and proline were highest in the hippocampus. In conclusion, this study provides a cerebral profile of amino acids in brain regions and the serum of rats and mice.
Environmental Toxicology and Chemistry | 2012
Helvécio Costa Menezes; Zenilda de Lourdes Cardeal
Polycyclic aromatic hydrocarbons (PAHs) were analyzed from ambient air particulate matter <10 µm (PM(10) ) and the total suspended particulate (TSP) phase continuously for a period of six months (May-October 2010) at five sampling sites located in the urban area of Divinópolis (Minas Gerais), southeastern Brazil, near iron and steel mills. The carcinogenic potency of priority PAHs relative to benzo[a]pyrene was estimated for a period of six months. Benzo[a]pyrene equivalents were 7.52 ng/m(3) for the study period. The estimated risk of lifetime lung cancer was 6.5 × 10(-4) . A model based on the diagnostic ratio and principal component analysis was applied for source apportionment. Considering the entire study period, the burning of biomass and fuel oil accounted for about 70% of the PAH profile. An inventory was performed during the monitoring period, with 37 companies representing major industries located in the urban area. The observations were consistent with the distribution of sources and indicated that the iron and steel sector was the largest contributor.
Talanta | 2017
Frederico Hayala Fernandes Barbosa; Helvécio Costa Menezes; Ana Paula C. Teixeira; Philippe Serp; Vitor Antipoff; Zenilda de Lourdes Cardeal
This article describes a simple, efficient, and versatile magnetic carbon nanotubes (MCNT) method for sampling and pre-concentration of pesticides in environmental water samples. The multi-walled magnetic carbon nanotubes were obtained by chemical deposition vapor (CVD) process. The MCNTs structures are formed of hydrophobic and hydrophilic fractions that provide great dispersion at any water matrix allowing simultaneously a high efficiency of pesticides sorption. Following the extraction, analytes were desorbed with minor amounts of solvent and analyzed by gas chromatography coupled mass spectrometry (GC/MS). The parameters amount of MCNTs used to extraction, desorption time, and desorption temperature were optimized. The method showed good linearity with determination coefficients between 0.9040 and 0.9733. The limits of detection and quantification were ranged between 0.51 and 2.29µgL-1 and between 1.19 and 5.35µgL-1 respectively. The recovery ranged from 79.9% to 111.6%. The method was applied to the determination of fifteen multiclass pesticides in real samples of environmental water collected in Minas Gerais, Brazil.
Journal of Chromatography A | 2015
Maria José Nunes de Paiva; Helvécio Costa Menezes; Júlio César Cardoso da Silva; Rodrigo R Resende; Zenilda de Lourdes Cardeal
Bile acids (BAs) are derived from cholesterol and produced in the liver. The most abundant bile acids in humans are usually conjugated with glycine and taurine and are divided into primary BAs such as cholic acid (CA) and chenodeoxycholic acid (CDCA) and secondary BAs like deoxycholic acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA). The differences amongst individual bile acids (BAs) are significant in order to distinguish different pathological processes and exposure to chemical compounds. Hollow fiber based liquid-phase microextraction (HF-LPME) is a technique that combines sample cleansing, extraction and the concentration of analytes, where a hydrophobic porous capillary membrane is impregnated with an organic extraction solvent and the lumen is filled with microliters of a phase acceptor both organic by nature. The aim of this study was to develop a new method to extract bile acids from plasma through HF-LPME of two phases (octanol as the acceptor phase) using LCMS-IT-TOF. The optimized two-phased LPME procedure for the extraction of bile acids showed limits of detection 1.0 μg L(-1) and limits of quantification of 5.0 μg L(-1). The intra-assay precision ranged from 2.1 to 11.9%. The method developed was linear over the range of 5.0-200.0 μg L(-1) for all analytes. The hollow-fiber liquid-phase microextraction method was applied to human plasma from workers exposed to organic and halogenated solvents and also to unexposed volunteers. The method is simple, low cost and it does not require large amounts of organic solvents, therefore it is quite suitable for the analysis of bile acids exposed to hepatotoxic compounds.
International Scholarly Research Notices | 2013
Maria José Nunes de Paiva; Helvécio Costa Menezes; Zenilda de Lourdes Cardeal
Bile acids derived from cholesterol are produced in the liver, and their analysis is difficult due to their complex natures and their low concentrations in biological fluids. Mixtures of various derivatives, created via conventional heating, are used for such analyses. Microwave radiation is proposed to accelerate the derivatization process. This paper presents a mass fragmentation study and microwave-assisted derivatization (MAD) for the silylation of bile acids (cholic and ursodesoxycholic) prior to gas chromatography and mass spectrometry analysis. The derivatization was performed using the two-step process of methoximation and silylation. The reaction time, power, and quantity of N,O-bis-(trimethylsilyl) trifluoroacetamide (BSTFA)
Polycyclic Aromatic Compounds | 2017
Damiana Freire Dias Macedo; Helvécio Costa Menezes; Alberto Avelar Barreto; Leiliane Coelho André; Zenilda de Lourdes Cardeal
ABSTRACT This article describes the development and validation of a solid-phase microextraction method using direct immersion and cold fiber (DI-CF-SPME) to collect samples in ambient air particulate matter and a gas phase to analyze 16 priority polycyclic aromatic hydrocarbons by gas chromatography mass spectrometry. This method has proven to yield good results for some validation parameters. Limits of detection and quantification ranged from 0.008 ng m−3 to 0.095 ng m−3 and from 0.020 ng m−3 to 0.101 ng m−3, respectively. The inter-assay precision shows a coefficient of variation ranging from 1.01% to 15.75%. The method was applied to the analysis of samples collected in 2014 and 2015 in the urban area of Belo Horizonte, located in southeastern Brazil. The samples were collected next to high-traffic routes and industrial regions using a PM10 (<10 μm) high-volume air sampler for 24-h periods. The total concentration of polycyclic aromatic hydrocarbon found in samples collected simultaneously in filter and foam were 8.53 ng m−3 and 18.58 ng m−3, respectively. Anthracene and fluoranthene showed the highest concentrations in the gas phase, whereas benzo(b)fluoranthene and benzo(ghi)perylene showed the highest levels in the particulate phase. A model based on principal component analysis was applied to identify possible anthropogenic sources of individual polycyclic aromatic hydrocarbons in 68 particulate matter samples. The results suggest that the main sources of these pollutants came from a combustion engine.