Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hendrik Simon Cornelis Metselaar is active.

Publication


Featured researches published by Hendrik Simon Cornelis Metselaar.


Science and Technology of Advanced Materials | 2015

A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing

Seyed Farid Seyed Shirazi; Samira Gharehkhani; Mehdi Mehrali; Hooman Yarmand; Hendrik Simon Cornelis Metselaar; Nahrizul Adib Kadri; Noor Azuan Abu Osman

Abstract Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.


ACS Applied Materials & Interfaces | 2014

Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites.

Mehdi Mehrali; Ehsan Moghaddam; Seyed Farid Seyed Shirazi; Saeid Baradaran; Mohammad Mehrali; Sara Tahan Latibari; Hendrik Simon Cornelis Metselaar; Nahrizul Adib Kadri; Keivan Zandi; Noor Azuan Abu Osman

Calcium silicate (CaSiO3, CS) ceramics are promising bioactive materials for bone tissue engineering, particularly for bone repair. However, the low toughness of CS limits its application in load-bearing conditions. Recent findings indicating the promising biocompatibility of graphene imply that graphene can be used as an additive to improve the mechanical properties of composites. Here, we report a simple method for the synthesis of calcium silicate/reduced graphene oxide (CS/rGO) composites using a hydrothermal approach followed by hot isostatic pressing (HIP). Adding rGO to pure CS increased the hardness of the material by ∼40%, the elastic modulus by ∼52%, and the fracture toughness by ∼123%. Different toughening mechanisms were observed including crack bridging, crack branching, crack deflection, and rGO pull-out, thus increasing the resistance to crack propagation and leading to a considerable improvement in the fracture toughness of the composites. The formation of bone-like apatite on a range of CS/rGO composites with rGO weight percentages ranging from 0 to 1.5 has been investigated in simulated body fluid (SBF). The presence of a bone-like apatite layer on the composite surface after soaking in SBF was demonstrated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The biocompatibility of the CS/rGO composites was characterized using methyl thiazole tetrazolium (MTT) assays in vitro. The cell adhesion results showed that human osteoblast cells (hFOB) can adhere to and develop on the CS/rGO composites. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of cells on the CS/rGO composites were improved compared with the pure CS ceramics. These results suggest that calcium silicate/reduced graphene oxide composites are promising materials for biomedical applications.


Journal of Biomedical Materials Research Part A | 2013

Dental implants from functionally graded materials.

Mehdi Mehrali; Farid Seyed Shirazi; Mohammad Mehrali; Hendrik Simon Cornelis Metselaar; Nahrizul Adib Kadri; Noor Azuan Abu Osman

Functionally graded material (FGM) is a heterogeneous composite material including a number of constituents that exhibit a compositional gradient from one surface of the material to the other subsequently, resulting in a material with continuously varying properties in the thickness direction. FGMs are gaining attention for biomedical applications, especially for implants, owing to their reported superior composition. Dental implants can be functionally graded to create an optimized mechanical behavior and achieve the intended biocompatibility and osseointegration improvement. This review presents a comprehensive summary of biomaterials and manufacturing techniques researchers employ throughout the world. Generally, FGM and FGM porous biomaterials are more difficult to fabricate than uniform or homogenous biomaterials. Therefore, our discussion is intended to give the readers about successful and obstacles fabrication of FGM and porous FGM in dental implants that will bring state-of-the-art technology to the bedside and develop quality of life and present standards of care.


Materials | 2013

Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage

Mahyar Silakhori; M.S. Naghavi; Hendrik Simon Cornelis Metselaar; T.M.I. Mahlia; Hadi Fauzi; Mohammad Mehrali

Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.


Wear | 1999

Tribological properties of nanoscale alumina–zirconia composites

B. Kerkwijk; Aloysius J.A. Winnubst; H. Verweij; E.J. Mulder; Hendrik Simon Cornelis Metselaar; Dirk J. Schipper

The tribological properties of zirconia (Y-TZP), alumina and their composites, alumina dispersed in zirconia (ADZ) and zirconia-toughened alumina (ZTA), were investigated. These ceramics are made by colloidal processing methods such that well-defined, homogeneous microstructures with submicron grains and few defects are obtained. Dry sliding tests against alumina balls were performed on a pin-on-disc tribometer using varying test conditions. It was shown that, with initial Hertzian contact pressures up to 1 GPa and sliding velocities up to 0.5 m/s, the specific wear rate was the highest for Y-TZP, 10?6 mm3/(N m), and the lowest for ZTA, 10?9 mm3/(N m). For both single-phase zirconia and alumina ceramics, it was found that addition of a harder (alumina) or a tougher (zirconia) phase, respectively, leads to an improved wear resistance. Depending on the test conditions, the wear mechanisms are abrasion, delamination and polishing. The coefficients of friction were as high as 0.8 for Y-TZP and as low as 0.45 for ZTA. The main conclusion of this work is that ZTA composites manufactured and tested in this study have a superior wear resistance and a relatively low coefficient of friction under dry sliding conditions.


Journal of The Mechanical Behavior of Biomedical Materials | 2014

Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications

Farid Seyed Shirazi; Mehdi Mehrali; Azim Ataollahi Oshkour; Hendrik Simon Cornelis Metselaar; Nahrizul Adib Kadri; N. A. Abu Osman

The focus of this study is to investigate the effect of Al2O3 on α-calcium silicate (α-CaSiO3) ceramic. α-CaSiO3 was synthesized from CaO and SiO2 using mechanochemical method followed by calcinations at 1000°C. α-CaSiO3 and alumina were grinded using ball mill to create mixtures, containing 0-50w% of Al2O3 loadings. The powders were uniaxially pressed and followed by cold isostatic pressing (CIP) in order to achieve greater uniformity of compaction and to increase the shape capability. Afterward, the compaction was sintered in a resistive element furnace at both 1150°C and 1250°C with a 5h holding time. It was found that alumina reacted with α-CaSiO3 and formed alumina-rich calcium aluminates after sintering. An addition of 15wt% of Al2O3 powder at 1250°C were found to improve the hardness and fracture toughness of the calcium silicate. It was also observed that the average grain sizes of α-CaSiO3 /Al2O3 composite were maintained 500-700nm after sintering process.


Ultrasonics Sonochemistry | 2014

Facile synthesis of calcium silicate hydrate using sodium dodecyl sulfate as a surfactant assisted by ultrasonic irradiation.

Mehdi Mehrali; Seyed Farid Seyed Shirazi; Saeid Baradaran; Mohammad Mehrali; Hendrik Simon Cornelis Metselaar; Nahrizul Adib Kadri; Noor Azuan Abu Osman

Calcium silicate hydrate (CSH) consisting of nanosheets has been successfully synthesized assisted by a tip ultrasonic irradiation (UI) method using calcium nitrate (Ca(NO3)·4H2O), sodium silicate (Na2SiO3·9H2O) and sodium dodecyl sulfate (SDS) in water. Systematic studies found that reaction time of ultrasonic irradiation and concentrations of surfactant (SDS) in the system were important factors to control the crystallite size and morphologies. The products were characterized by X-ray power diffraction (XRD), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectrometry (FTIR). The size-strain plot (SSP) method was used to study the individual contributions of crystallite sizes and lattice strain on the peak broadening of the CSH. These characterization techniques revealed the successful formation of a crystalline phase with an average crystallite size of about 13 nm and nanosheet morphology at a reaction time of 10 min UI with 0.2 g SDS in solvent which were found to be optimum time and concentrations of SDS for the synthesis of CSH powders.


RSC Advances | 2016

The green reduction of graphene oxide

M. T. H. Aunkor; I.M. Mahbubul; R. Saidur; Hendrik Simon Cornelis Metselaar

Graphene is an ultra-thin material, which has received broad interest in many areas of science and technology because of its unique physical, chemical, mechanical and thermal properties. Synthesis of high quality graphene in an inexpensive and eco-friendly manner is a big challenge. Among various methods, chemical synthesis is considered the best because it is easy, scalable, facile, and inexpensive. Different kinds of chemical reducers have been used to produce graphene sheets. However, some chemicals are toxic, corrosive, and hazardous. For this reason, researchers have been using different environmentally friendly substances (termed green reducers) to produce functional graphene sheets. This paper presents an overview and discussion of the green reduction of graphene oxide (GO) to graphene. It also reviews the characterization of GO and its oxide reduction through the analysis of different spectroscopic and microscopic techniques such as Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy.


PLOS ONE | 2014

Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite.

Mehdi Mehrali; Ehsan Moghaddam; Seyed Farid Seyed Shirazi; Saeid Baradaran; Mohammad Mehrali; Sara Tahan Latibari; Hendrik Simon Cornelis Metselaar; Nahrizul Adib Kadri; Keivan Zandi; Noor Azuan Abu Osman

Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectroscopy and scanning electron microscopy showed that GNP survived the harsh processing conditions of the selected HIP processing parameters. The uniform distribution of 1 wt.% GNP in the CS matrix, high densification and fine CS grain size help to improve the fracture toughness by ∼130%, hardness by ∼30% and brittleness index by ∼40% as compared to the CS matrix without GNP. The toughening mechanisms, such as crack bridging, pull-out, branching and deflection induced by GNP are observed and discussed. The GNP/CS composites exhibit good apatite-forming ability in the simulated body fluid (SBF). Our results indicate that the addition of GNP decreased pH value in SBF. Effect of addition of GNP on early adhesion and proliferation of human osteoblast cells (hFOB) was measured in vitro. The GNP/CS composites showed good biocompatibility and promoted cell viability and cell proliferation. The results indicated that the cell viability and proliferation are affected by time and concentration of GNP in the CS matrix.


Journal of Biomedical Materials Research Part A | 2014

In vitro characterization and mechanical properties of β-calcium silicate/POC composite as a bone fixation device.

Farid Seyed Shirazi; Ehsan Moghaddam; Mehdi Mehrali; Azim Ataollahi Oshkour; Hendrik Simon Cornelis Metselaar; Nahrizul Adib Kadri; Keivan Zandi; N. A. Abu

Calcium silicate (CS, CaSiO3 ) is a bioactive, degradable, and biocompatible ceramic and has been considered for its potential in the field of orthopedic surgery. The objective of this study is the fabrication and characterization of the β-CS/poly(1.8-octanediol citrate) (POC) biocomposite, with the goals of controlling its weight loss and improving its biological and mechanical properties. POC is one of the most biocompatible polymers, and it is widely used in biomedical engineering applications. The degradation and bioactivity of the composites were determined by soaking the composites in phosphate-buffered saline and simulated body fluid, respectively. Human osteoblast cells were cultured on the composites to determine their cell proliferation and adhesion. The results illustrated that the flexural and compressive strengths were significantly enhanced by a modification of 40% POC. It was also concluded that the degradation bioactivity and amelioration of cell proliferation increased significantly with an increasing β-CS content.

Collaboration


Dive into the Hendrik Simon Cornelis Metselaar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mehdi Mehrali

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

T.M.I. Mahlia

Universiti Tenaga Nasional

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mehdi Mehrali

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge