Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heng Du is active.

Publication


Featured researches published by Heng Du.


Nature Medicine | 2008

Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease

Heng Du; Lan Guo; Fang Fang; Doris Chen; Alexander A. Sosunov; Guy M. McKhann; Yilin Yan; Chunyu Wang; Hong Zhang; Jeffery D. Molkentin; Frank Gunn-Moore; Jean Paul Vonsattel; Ottavio Arancio; John Xi Chen; Shi Du Yan

Cyclophilin D (CypD, encoded by Ppif) is an integral part of the mitochondrial permeability transition pore, whose opening leads to cell death. Here we show that interaction of CypD with mitochondrial amyloid-β protein (Aβ) potentiates mitochondrial, neuronal and synaptic stress. The CypD-deficient cortical mitochondria are resistant to Aβ- and Ca2+-induced mitochondrial swelling and permeability transition. Additionally, they have an increased calcium buffering capacity and generate fewer mitochondrial reactive oxygen species. Furthermore, the absence of CypD protects neurons from Aβ- and oxidative stress–induced cell death. Notably, CypD deficiency substantially improves learning and memory and synaptic function in an Alzheimers disease mouse model and alleviates Aβ-mediated reduction of long-term potentiation. Thus, the CypD-mediated mitochondrial permeability transition pore is directly linked to the cellular and synaptic perturbations observed in the pathogenesis of Alzheimers disease. Blockade of CypD may be a therapeutic strategy in Alzheimers disease.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model

Heng Du; Lan Guo; Shiqiang Yan; Alexander A. Sosunov; Guy M. McKhann; Shirley ShiDu Yan

Synaptic dysfunction and the loss of synapses are early pathological features of Alzheimers disease (AD). Synapses are sites of high energy demand and extensive calcium fluctuations; accordingly, synaptic transmission requires high levels of ATP and constant calcium fluctuation. Thus, synaptic mitochondria are vital for maintenance of synaptic function and transmission through normal mitochondrial energy metabolism, distribution and trafficking, and through synaptic calcium modulation. To date, there has been no extensive analysis of alterations in synaptic mitochondria associated with amyloid pathology in an amyloid β (Aβ)-rich milieu. Here, we identified differences in mitochondrial properties and function of synaptic vs. nonsynaptic mitochondrial populations in the transgenic mouse brain, which overexpresses the human mutant form of amyloid precursor protein and Aβ. Compared with nonsynaptic mitochondria, synaptic mitochondria showed a greater degree of age-dependent accumulation of Aβ and mitochondrial alterations. The synaptic mitochondrial pool of Aβ was detected at an age as young as 4 mo, well before the onset of nonsynaptic mitochondrial and extensive extracellular Aβ accumulation. Aβ-insulted synaptic mitochondria revealed early deficits in mitochondrial function, as shown by increased mitochondrial permeability transition, decline in both respiratory function and activity of cytochrome c oxidase, and increased mitochondrial oxidative stress. Furthermore, a low concentration of Aβ (200 nM) significantly interfered with mitochondrial distribution and trafficking in axons. These results demonstrate that synaptic mitochondria, especially Aβ-rich synaptic mitochondria, are more susceptible to Aβ-induced damage, highlighting the central importance of synaptic mitochondrial dysfunction relevant to the development of synaptic degeneration in AD.


Proceedings of the National Academy of Sciences of the United States of America | 2009

RAGE-mediated signaling contributes to intraneuronal transport of amyloid-β and neuronal dysfunction

Kazuhiro Takuma; Fang Fang; Wensheng Zhang; Shiqiang Yan; Emiko Fukuzaki; Heng Du; Alexander A. Sosunov; Guy M. McKhann; Yoko Funatsu; Noritaka Nakamichi; Taku Nagai; Hiroyuki Mizoguchi; Daisuke Ibi; Osamu Hori; Satoshi Ogawa; David M. Stern; Kiyofumi Yamada; Shirley ShiDu Yan

Intracellular amyloid-β peptide (Aβ) has been implicated in neuronal death associated with Alzheimers disease. Although Aβ is predominantly secreted into the extracellular space, mechanisms of Aβ transport at the level of the neuronal cell membrane remain to be fully elucidated. We demonstrate that receptor for advanced glycation end products (RAGE) contributes to transport of Aβ from the cell surface to the intracellular space. Mouse cortical neurons exposed to extracellular human Aβ subsequently showed detectable peptide intracellularly in the cytosol and mitochondria by confocal microscope and immunogold electron microscopy. Pretreatment of cultured neurons from wild-type mice with neutralizing antibody to RAGE, and neurons from RAGE knockout mice displayed decreased uptake of Aβ and protection from Aβ-mediated mitochondrial dysfunction. Aβ activated p38 MAPK, but not SAPK/JNK, and then stimulated intracellular uptake of Aβ-RAGE complex. Similar intraneuronal co-localization of Aβ and RAGE was observed in the hippocampus of transgenic mice overexpressing mutant amyloid precursor protein. These findings indicate that RAGE contributes to mechanisms involved in the translocation of Aβ from the extracellular to the intracellular space, thereby enhancing Aβ cytotoxicity.


Biochimica et Biophysica Acta | 2010

Mitochondrial permeability transition pore in Alzheimer's disease: Cyclophilin D and amyloid beta

Heng Du; Shirley ShiDu Yan

Amyloid beta (Abeta) plays a critical role in the pathophysiology of Alzheimers disease. Increasing evidence indicates mitochondria as an important target of Abeta toxicity; however, the effects of Abeta toxicity on mitochondria have not yet been fully elucidated. Recent biochemical studies in vivo and in vitro implicate mitochondrial permeability transition pore (mPTP) formation involvement in Abeta-mediated mitochondrial dysfunction. mPTP formation results in severe mitochondrial dysfunction such as reactive oxygen species (ROS) generation, mitochondrial membrane potential dissipation, intracellular calcium perturbation, decrease in mitochondrial respiration, release of pro-apoptotic factors and eventually cell death. Cyclophilin D (CypD) is one of the more well-known mPTP components and recent findings reveal that Abeta has significant impact on CypD-mediated mPTP formation. In this review, the role of Abeta in the formation of mPTP and the potential of mPTP inhibition as a therapeutic strategy in AD treatment are examined.


The Journal of Neuroscience | 2011

Inhibition of Amyloid-β (Aβ) Peptide-Binding Alcohol Dehydrogenase-Aβ Interaction Reduces Aβ Accumulation and Improves Mitochondrial Function in a Mouse Model of Alzheimer's Disease

Jun Yao; Heng Du; Shiqiang Yan; Fang Fang; Chaodong Wang; Lih-Fen Lue; Lan Guo; Doris Chen; David M. Stern; Frank J. Gunn Moore; John Xi Chen; Ottavio Arancio; Shirley ShiDu Yan

Amyloid-β (Aβ) peptide-binding alcohol dehydrogenase (ABAD), an enzyme present in neuronal mitochondria, exacerbates Aβ-induced cell stress. The interaction of ABAD with Aβ exacerbates Aβ-induced mitochondrial and neuronal dysfunction. Here, we show that inhibition of the ABAD-Aβ interaction, using a decoy peptide (DP) in vitro and in vivo, protects against aberrant mitochondrial and neuronal function and improves spatial learning/memory. Intraperitoneal administration of ABAD-DP [fused to the transduction of human immunodeficiency virus 1-transactivator (Tat) protein and linked to the mitochondrial targeting sequence (Mito) (TAT-mito-DP) to transgenic APP mice (Tg mAPP)] blocked formation of ABAD-Aβ complex in mitochondria, increased oxygen consumption and enzyme activity associated with the mitochondrial respiratory chain, attenuated mitochondrial oxidative stress, and improved spatial memory. Similar protective effects were observed in Tg mAPP mice overexpressing neuronal ABAD decoy peptide (Tg mAPP/mito-ABAD). Notably, inhibition of the ABAD-Aβ interaction significantly reduced mitochondrial Aβ accumulation. In parallel, the activity of mitochondrial Aβ-degrading enzyme PreP (presequence peptidase) was enhanced in Tg mAPP mitochondria expressing the ABAD decoy peptide. These data indicate that segregating ABAD from Aβ protects mitochondria/neurons from Aβ toxicity; thus, ABAD-Aβ interaction is an important mechanism underlying Aβ-mediated mitochondrial and neuronal perturbation. Inhibitors of ABAD-Aβ interaction may hold promise as targets for the prevention and treatment of Alzheimers disease.


Neurobiology of Aging | 2011

Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model

Heng Du; Lan Guo; Wensheng Zhang; Monika Rydzewska; Shidu Yan

Mitochondrial stress is one of the early features of Alzheimer disease (AD). Mitochondrial Aβ has been linked to mitochondrial toxicity. Our recent study demonstrated that cyclophilin D (CypD) mediated mitochondrial permeability transition pore (mPTP) is an important mechanism for neuronal and synaptic stress induced by both Aβ and oxidative stress. In transgenic AD-type mice overexpressing mutant amyloid precursor protein (APP) and Aβ (mAPP), CypD deficiency improves mitochondrial and synaptic function and learning/memory up to 12 months old. Here we provide evidence of the protective effects of CypD deficiency in aged AD mice (22-24 months). Cyp D deficient mAPP mice demonstrate less calcium-induced mitochondrial swelling, increased mitochondrial calcium uptake capacity, preserved mitochondrial respiratory function and improved spatial learning/memory even in old age (known to be the age for late stage AD pathology and synaptic dysfunction). These data demonstrate that abrogation of CypD results in persistent life-long protection against Aβ toxicity in an Alzheimers disease mouse model, thereby suggesting that blockade of CypD may be of benefit for Alzheimer disease treatment.


PLOS ONE | 2013

Cyclophilin D Deficiency Rescues Axonal Mitochondrial Transport in Alzheimer’s Neurons

Lan Guo; Heng Du; Shiqiang Yan; Xiaoping Wu; Guy M. McKhann; John Xi Chen; Shirley ShiDu Yan

Normal axonal mitochondrial transport and function is essential for the maintenance of synaptic function. Abnormal mitochondrial motility and mitochondrial dysfunction within axons are critical for amyloid β (Aβ)-induced synaptic stress and the loss of synapses relevant to the pathogenesis of Alzheimer’s disease (AD). However, the mechanisms controlling axonal mitochondrial function and transport alterations in AD remain elusive. Here, we report an unexplored role of cyclophilin D (CypD)-dependent mitochondrial permeability transition pore (mPTP) in Aβ-impaired axonal mitochondrial trafficking. Depletion of CypD significantly protects axonal mitochondrial motility and dynamics from Aβ toxicity as shown by increased axonal mitochondrial density and distribution and improved bidirectional transport of axonal mitochondria. Notably, blockade of mPTP by genetic deletion of CypD suppresses Aβ-mediated activation of the p38 mitogen-activated protein kinase signaling pathway, reverses axonal mitochondrial abnormalities, improves synaptic function, and attenuates loss of synapse, suggesting a role of CypD-dependent signaling in Aβ-induced alterations in axonal mitochondrial trafficking. The potential mechanisms of the protective effects of lacking CypD on Aβ-induced abnormal mitochondrial transport in axon are increased axonal calcium buffer capability, diminished reactive oxygen species (ROS), and suppressing downstream signal transduction P38 activation. These findings provide new insights into CypD-dependent mitochondrial mPTP and signaling on mitochondrial trafficking in axons and synaptic degeneration in an environment enriched for Aβ.


Antioxidants & Redox Signaling | 2012

Synaptic mitochondrial pathology in Alzheimer's disease.

Heng Du; Lan Guo; Shirley ShiDu Yan

SIGNIFICANCE Synaptic degeneration, an early pathological feature in Alzheimers disease (AD), is closely correlated to impaired cognitive function and memory loss. Recent studies suggest that involvement of amyloid-beta peptide (Aβ) in synaptic mitochondrial alteration underlies these synaptic lesions. Thus, to understand the Aβ-associated synaptic mitochondrial perturbations would fortify our understanding of synaptic stress in the pathogenesis of AD. RECENT ADVANCES Increasing evidence suggests that synaptic mitochondrial dysfunction is strongly associated with synaptic failure in many neurodegenerative diseases including AD. Based on recent findings in human AD subjects, AD animal models, and AD cellular models, synaptic mitochondria undergo multiple malfunctions including Aβ accumulation, increased oxidative stress, decreased respiration, and compromised calcium handling capacity, all of which occur earlier than changes seen in nonsynaptic mitochondria before predominant AD pathology. Of note, the impact of Aβ on mitochondrial motility and dynamics exacerbates synaptic mitochondrial alterations. CRITICAL ISSUES Synaptic mitochondria demonstrate early deficits in AD; in combination with the role that synaptic mitochondria play in sustaining synaptic functions, deficits in synaptic mitochondria may be a key factor involved in an early synaptic pathology in AD. FUTURE DIRECTIONS The importance of synaptic mitochondria in supporting synapses and the high vulnerability of synaptic mitochondria to Aβ make them a promising target of new therapeutic strategy for AD.


Journal of Alzheimer's Disease | 2011

Decreased Proteolytic Activity of the Mitochondrial Amyloid-β Degrading Enzyme, PreP Peptidasome, in Alzheimer's Disease Brain Mitochondria

Nyosha Alikhani; Lan Guo; Shiqiang Yan; Heng Du; Catarina Moreira Pinho; John Xi Chen; Elzbieta Glaser; Shirley ShiDu Yan

Accumulation of amyloid-β peptide (Aβ), the neurotoxic peptide implicated in the pathogenesis of Alzheimers disease (AD), has been shown in brain mitochondria of AD patients and of AD transgenic mouse models. The presence of Aβ in mitochondria leads to free radical generation and neuronal stress. Recently, we identified the presequence protease, PreP, localized in the mitochondrial matrix in mammalian mitochondria as the novel mitochondrial Aβ-degrading enzyme. In the present study, we examined PreP activity in the mitochondrial matrix of the human brains temporal lobe, an area of the brain highly susceptible to Aβ accumulation and reactive oxygen species (ROS) production. We found significantly lower hPreP activity in AD brains compared with non-AD age-matched controls. By contrast, in the cerebellum, a brain region typically spared from Aβ accumulation, there was no significant difference in hPreP activity when comparing AD samples to non-AD controls. We also found significantly reduced PreP activity in the mitochondrial matrix of AD transgenic mouse brains (Tg mAβPP and Tg mAβPP/ABAD) when compared to non-transgenic aged-matched mice. Furthermore, mitochondrial fractions isolated from AD brains and Tg mAβPP mice had higher levels of 4-hydroxynonenal, an oxidative product, as compared with those from non-AD and nonTg mice. Accordingly, activity of cytochrome c oxidase was significantly reduced in the AD mitochondria. These findings suggest that decreased PreP proteolytic activity, possibly due to enhanced ROS production, contributes to Aβ accumulation in mitochondria leading to the mitochondrial toxicity and neuronal death that is exacerbated in AD. Clearance of mitochondrial Aβ by PreP may thus be of importance in the pathology of AD.


Biochimica et Biophysica Acta | 2014

Cyclophilin D deficiency rescues Aβ-impaired PKA/CREB signaling and alleviates synaptic degeneration

Heng Du; Lan Guo; Xiaoping Wu; Alexander A. Sosunov; Guy M. McKhann; John Xi Chen; Shirley ShiDu Yan

The coexistence of neuronal mitochondrial pathology and synaptic dysfunction is an early pathological feature of Alzheimers disease (AD). Cyclophilin D (CypD), an integral part of mitochondrial permeability transition pore (mPTP), is involved in amyloid beta (Aβ)-instigated mitochondrial dysfunction. Blockade of CypD prevents Aβ-induced mitochondrial malfunction and the consequent cognitive impairments. Here, we showed the elimination of reactive oxygen species (ROS) by antioxidants probucol or superoxide dismutase (SOD)/catalase blocks Aβ-mediated inactivation of protein kinase A (PKA)/cAMP regulatory-element-binding (CREB) signal transduction pathway and loss of synapse, suggesting the detrimental effects of oxidative stress on neuronal PKA/CREB activity. Notably, neurons lacking CypD significantly attenuate Aβ-induced ROS. Consequently, CypD-deficient neurons are resistant to Aβ-disrupted PKA/CREB signaling by increased PKA activity, phosphorylation of PKA catalytic subunit (PKA C), and CREB. In parallel, lack of CypD protects neurons from Aβ-induced loss of synapses and synaptic dysfunction. Furthermore, compared to the mAPP mice, CypD-deficient mAPP mice reveal less inactivation of PKA-CREB activity and increased synaptic density, attenuate abnormalities in dendritic spine maturation, and improve spontaneous synaptic activity. These findings provide new insights into a mechanism in the crosstalk between the CypD-dependent mitochondrial oxidative stress and signaling cascade, leading to synaptic injury, functioning through the PKA/CREB signal transduction pathway.

Collaboration


Dive into the Heng Du's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Xi Chen

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Stern

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge