Hengyou Weng
University of Cincinnati
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hengyou Weng.
Cancer Cell | 2017
Zejuan Li; Hengyou Weng; Rui Su; Xiaocheng Weng; Zhixiang Zuo; Chenying Li; Huilin Huang; Sigrid Nachtergaele; Lei Dong; Chao Hu; Xi Qin; Lichun Tang; Yungui Wang; Gia-Ming Hong; Hao Huang; Xiao Wang; Ping Chen; Sandeep Gurbuxani; Stephen Arnovitz; Yuanyuan Li; Shenglai Li; Jennifer Strong; Mary Beth Neilly; Richard A. Larson; Xi Jiang; Pumin Zhang; Jie Jin; Chuan He; Jianjun Chen
N6-Methyladenosine (m6A) represents the most prevalent internal modification in mammalian mRNAs. Despite its functional importance in various fundamental bioprocesses, the studies of m6A in cancer have been limited. Here we show that FTO, as an m6A demethylase, plays a critical oncogenic role in acute myeloid leukemia (AML). FTO is highly expressed in AMLs with t(11q23)/MLL rearrangements, t(15;17)/PML-RARA, FLT3-ITD, and/or NPM1 mutations. FTO enhances leukemic oncogene-mediated cell transformation and leukemogenesis, and inhibits all-trans-retinoic acid (ATRA)-induced AML cell differentiation, through regulating expression of targets such as ASB2 and RARA by reducing m6A levels in these mRNA transcripts. Collectively, our study demonstrates the functional importance of the m6A methylation and the corresponding proteins in cancer, and provides profound insights into leukemogenesis and drug response.
Nature Communications | 2016
Xi Jiang; Chao Hu; Stephen Arnovitz; Jason Bugno; Miao Yu; Zhixiang Zuo; Ping Chen; Hao Huang; Bryan Ulrich; Sandeep Gurbuxani; Hengyou Weng; Jennifer Strong; Yungui Wang; Yuanyuan Li; Justin Salat; Shenglai Li; Abdel G. Elkahloun; Yang Yang; Mary Beth Neilly; Richard A. Larson; Michelle M. Le Beau; Tobias Herold; Stefan K. Bohlander; Paul Liu; Jiwang Zhang; Zejuan Li; Chuan He; Jie Jin; Seungpyo Hong; Jianjun Chen
MicroRNAs are subject to precise regulation and have key roles in tumorigenesis. In contrast to the oncogenic role of miR-22 reported in myelodysplastic syndrome (MDS) and breast cancer, here we show that miR-22 is an essential anti-tumour gatekeeper in de novo acute myeloid leukaemia (AML) where it is significantly downregulated. Forced expression of miR-22 significantly suppresses leukaemic cell viability and growth in vitro, and substantially inhibits leukaemia development and maintenance in vivo. Mechanistically, miR-22 targets multiple oncogenes, including CRTC1, FLT3 and MYCBP, and thus represses the CREB and MYC pathways. The downregulation of miR-22 in AML is caused by TET1/GFI1/EZH2/SIN3A-mediated epigenetic repression and/or DNA copy-number loss. Furthermore, nanoparticles carrying miR-22 oligos significantly inhibit leukaemia progression in vivo. Together, our study uncovers a TET1/GFI1/EZH2/SIN3A/miR-22/CREB-MYC signalling circuit and thereby provides insights into epigenetic/genetic mechanisms underlying the pathogenesis of AML, and also highlights the clinical potential of miR-22-based AML therapy.
Cell Stem Cell | 2017
Hengyou Weng; Huilin Huang; Huizhe Wu; Xi Qin; Boxuan Simen Zhao; Lei Dong; Hailing Shi; Jennifer R. Skibbe; Chao Shen; Chao Hu; Yue Sheng; Yungui Wang; Mark Wunderlich; Bin Zhang; Louis C. Doré; Rui Su; Xiaolan Deng; Kyle Ferchen; Chenying Li; Miao Sun; Zhike Lu; Xi Jiang; Guido Marcucci; James C. Mulloy; Jianhua Yang; Zhijian Qian; Minjie Wei; Chuan He; Jianjun Chen
N6-methyladenosine (m6A), the most prevalent internal modification in eukaryotic messenger RNAs (mRNAs), plays critical roles in many bioprocesses. However, its functions in normal and malignant hematopoiesis remain elusive. Here, we report that METTL14, a key component of the m6A methyltransferase complex, is highly expressed in normal hematopoietic stem/progenitor cells (HSPCs) and acute myeloid leukemia (AML) cells carrying t(11q23), t(15;17), or t(8;21) and is downregulated during myeloid differentiation. Silencing of METTL14 promotes terminal myeloid differentiation of normal HSPCs and AML cells and inhibits AML cell survival/proliferation. METTL14 is required for development and maintenance of AML and self-renewal of leukemia stem/initiation cells (LSCs/LICs). Mechanistically, METTL14 exerts its oncogenic role by regulating its mRNA targets (e.g., MYB and MYC) through m6A modification, while the protein itself is negatively regulated by SPI1. Collectively, our results reveal the SPI1-METTL14-MYB/MYC signaling axis in myelopoiesis and leukemogenesis and highlight the critical roles of METTL14 and m6A modification in normal and malignant hematopoiesis.
Blood | 2015
Zejuan Li; Ping Chen; Rui Su; Yuanyuan Li; Chao Hu; Yungui Wang; Stephen Arnovitz; Miao He; Sandeep Gurbuxani; Zhixiang Zuo; Abdel G. Elkahloun; Shenglai Li; Hengyou Weng; Hao Huang; Mary Beth Neilly; Shusheng Wang; Eric N. Olson; Richard A. Larson; Michelle M. Le Beau; Jiwang Zhang; Xi Jiang; Minjie Wei; Jie Jin; Paul Liu; Jianjun Chen
It is generally assumed that gain- and loss-of-function manipulations of a functionally important gene should lead to the opposite phenotypes. We show in this study that both overexpression and knockout of microRNA (miR)-126 surprisingly result in enhanced leukemogenesis in cooperation with the t(8;21) fusion genes AML1-ETO/RUNX1-RUNX1T1 and AML1-ETO9a (a potent oncogenic isoform of AML1-ETO). In accordance with our observation that increased expression of miR-126 is associated with unfavorable survival in patients with t(8;21) acute myeloid leukemia (AML), we show that miR-126 overexpression exhibits a stronger effect on long-term survival and progression of AML1-ETO9a-mediated leukemia stem cells/leukemia initiating cells (LSCs/LICs) in mice than does miR-126 knockout. Furthermore, miR-126 knockout substantially enhances responsiveness of leukemia cells to standard chemotherapy. Mechanistically, miR-126 overexpression activates genes that are highly expressed in LSCs/LICs and/or primitive hematopoietic stem/progenitor cells, likely through targeting ERRFI1 and SPRED1, whereas miR-126 knockout activates genes that are highly expressed in committed, more differentiated hematopoietic progenitor cells, presumably through inducing FZD7 expression. Our data demonstrate that miR-126 plays a critical but 2-faceted role in leukemia and thereby uncover a new layer of miRNA regulation in cancer. Moreover, because miR-126 depletion can sensitize AML cells to standard chemotherapy, our data also suggest that miR-126 represents a promising therapeutic target.
Cancer Genetics and Cytogenetics | 2015
Hengyou Weng; Kumar Lal; Frank F. Yang; Jianjun Chen
In addition to genetic abnormalities, such as chromosomal translocations and somatic mutations that have been widely acknowledged in the leukemogenesis of acute myeloid leukemia (AML), epigenetic modifications also play a vital role in this process. MicroRNA (miRNA) regulation is emerging as a new layer of epigenetic regulation besides DNA methylation and histone modifications. Among the miRNAs first identified to be specifically expressed in hematopoietic cells, the miR-181 family has been implicated in regulating the differentiation of B cells, T cells, and natural killer cells during normal hematopoiesis, and has been linked tightly to the pathogenesis and prognosis of AML. Accumulating evidence indicates that miR-181 acts as a tumor suppressor in the pathogenesis of AML and exhibits a significant impact on the survival of patients with AML. Herein, we review the role of miR-181 as a diagnostic marker and prognostic predictor in AML, and discuss the potential use of miR-181 as a therapeutic target for AML.
Cancer Research | 2016
Xi Jiang; Jason Bugno; Chao Hu; Yang Yang; Tobias Herold; Jun Qi; Ping Chen; Sandeep Gurbuxani; Stephen Arnovitz; Jennifer Strong; Kyle Ferchen; Bryan Ulrich; Hengyou Weng; Yungui Wang; Hao Huang; Shenglai Li; Mary Beth Neilly; Richard A. Larson; Michelle M. Le Beau; Stefan K. Bohlander; Jie Jin; Zejuan Li; James E. Bradner; Seungpyo Hong; Jianjun Chen
Acute myeloid leukemia (AML) is a common and fatal form of hematopoietic malignancy. Overexpression and/or mutations of FLT3 have been shown to occur in the majority of cases of AML. Our analysis of a large-scale AML patient cohort (N = 562) indicates that FLT3 is particularly highly expressed in some subtypes of AML, such as AML with t(11q23)/MLL-rearrangements or FLT3-ITD. Such AML subtypes are known to be associated with unfavorable prognosis. To treat FLT3-overexpressing AML, we developed a novel targeted nanoparticle system: FLT3 ligand (FLT3L)-conjugated G7 poly(amidoamine) (PAMAM) nanosized dendriplex encapsulating miR-150, a pivotal tumor suppressor and negative regulator of FLT3 We show that the FLT3L-guided miR-150 nanoparticles selectively and efficiently target FLT3-overexpressing AML cells and significantly inhibit viability/growth and promote apoptosis of the AML cells. Our proof-of-concept animal model studies demonstrate that the FLT3L-guided miR-150 nanoparticles tend to concentrate in bone marrow, and significantly inhibit progression of FLT3-overexpressing AML in vivo, while exhibiting no obvious side effects on normal hematopoiesis. Collectively, we have developed a novel targeted therapeutic strategy, using FLT3L-guided miR-150-based nanoparticles, to treat FLT3-overexpressing AML with high efficacy and minimal side effects. Cancer Res; 76(15); 4470-80. ©2016 AACR.
Cancer Research | 2016
Zejuan Li; Ping Chen; Rui Su; Chao Hu; Yuanyuan Li; Abdel G. Elkahloun; Zhixiang Zuo; Sandeep Gurbuxani; Stephen Arnovitz; Hengyou Weng; Yungui Wang; Shenglai Li; Hao Huang; Mary Beth Neilly; Gang Greg Wang; Xi Jiang; Paul Liu; Jie Jin; Jianjun Chen
Overexpression of HOXA/MEIS1/PBX3 homeobox genes is the hallmark of mixed lineage leukemia (MLL)-rearranged acute myeloid leukemia (AML). HOXA9 and MEIS1 are considered to be the most critical targets of MLL fusions and their coexpression rapidly induces AML. MEIS1 and PBX3 are not individually able to transform cells and were therefore hypothesized to function as cofactors of HOXA9. However, in this study, we demonstrate that coexpression of PBX3 and MEIS1 (PBX3/MEIS1), without ectopic expression of a HOX gene, is sufficient for transformation of normal mouse hematopoietic stem/progenitor cells in vitro. Moreover, PBX3/MEIS1 overexpression also caused AML in vivo, with a leukemic latency similar to that caused by forced expression of MLL-AF9, the most common form of MLL fusions. Furthermore, gene expression profiling of hematopoietic cells demonstrated that PBX3/MEIS1 overexpression, but not HOXA9/MEIS1, HOXA9/PBX3, or HOXA9 overexpression, recapitulated the MLL-fusion-mediated core transcriptome, particularly upregulation of the endogenous Hoxa genes. Disruption of the binding between MEIS1 and PBX3 diminished PBX3/MEIS1-mediated cell transformation and HOX gene upregulation. Collectively, our studies strongly implicate the PBX3/MEIS1 interaction as a driver of cell transformation and leukemogenesis, and suggest that this axis may play a critical role in the regulation of the core transcriptional programs activated in MLL-rearranged and HOX-overexpressing AML. Therefore, targeting the MEIS1/PBX3 interaction may represent a promising therapeutic strategy to treat these AML subtypes.
Cancer Letters | 2016
Hao Huang; Xi Jiang; Jinhua Wang; Yuanyuan Li; Chun-Xiao Song; Ping Chen; Shenglai Li; Sandeep Gurbuxani; Stephen Arnovitz; Yungui Wang; Hengyou Weng; Mary Beth Neilly; Chuan He; Zejuan Li; Jianjun Chen
Expression of functionally important genes is often tightly regulated at both transcriptional and post-transcriptional levels. We reported previously that TET1, the founding member of the TET methylcytosine dioxygenase family, plays an essential oncogenic role in MLL-rearranged acute myeloid leukemia (AML), where it is overexpressed owing to MLL-fusion-mediated direct up-regulation at the transcriptional level. Here we show that the overexpression of TET1 in MLL-rearranged AML also relies on the down-regulation of miR-26a, which directly negatively regulates TET1 expression at the post-transcriptional level. Through inhibiting expression of TET1 and its downstream targets, forced expression of miR-26a significantly suppresses the growth/viability of human MLL-rearranged AML cells, and substantially inhibits MLL-fusion-mediated mouse hematopoietic cell transformation and leukemogenesis. Moreover, c-Myc, an oncogenic transcription factor up-regulated in MLL-rearranged AML, mediates the suppression of miR-26a expression at the transcriptional level. Collectively, our data reveal a previously unappreciated signaling pathway involving the MLL-fusion/MYC⊣miR-26a⊣TET1 signaling circuit, in which miR-26a functions as an essential tumor-suppressor mediator and its transcriptional repression is required for the overexpression and oncogenic function of TET1 in MLL-rearranged AML. Thus, restoration of miR-26a expression/function holds therapeutic potential to treat MLL-rearranged AML.
Scientific Reports | 2017
Yungui Wang; Jennifer R. Skibbe; Chao Hu; Lei Dong; Kyle Ferchen; Rui Su; Chenying Li; Hao Huang; Hengyou Weng; Huilin Huang; Xi Qin; Jie Jin; Jianjun Chen; Xi Jiang
MLL-rearranged acute myeloid leukemia (AML) remains a fatal disease with a high rate of relapse and therapeutic failure due to chemotherapy resistance. In analysis of our Affymetrix microarray profiling and chromatin immunoprecipitation (ChIP) assays, we found that ALOX5 is especially down-regulated in MLL-rearranged AML, via transcription repression mediated by Polycomb repressive complex 2 (PRC2). Colony forming/replating and bone marrow transplantation (BMT) assays showed that Alox5 exhibited a moderate anti-tumor effect both in vitro and in vivo. Strikingly, leukemic cells with Alox5 overexpression showed a significantly higher sensitivity to the standard chemotherapeutic agents, i.e., doxorubicin (DOX) and cytarabine (Ara-C). The drug-sensitizing role of Alox5 was further confirmed in human and murine MLL-rearranged AML cell models in vitro, as well as in the in vivo MLL-rearranged AML BMT model coupled with treatment of “5 + 3” (i.e. DOX plus Ara-C) regimen. Stat and K-Ras signaling pathways were negatively correlated with Alox5 overexpression in MLL-AF9-leukemic blast cells; inhibition of the above signaling pathways mimicked the drug-sensitizing effect of ALOX5 in AML cells. Collectively, our work shows that ALOX5 plays a moderate anti-tumor role and functions as a drug sensitizer, with a therapeutic potential, in MLL-rearranged AML.
Nature Communications | 2018
Xi Jiang; Chao Hu; Kyle Ferchen; Ji Nie; Xiaolong Cui; Chih-Hong Chen; Liting Cheng; Zhixiang Zuo; William Seibel; Chunjiang He; Yixuan Tang; Jennifer R. Skibbe; Mark Wunderlich; William C. Reinhold; Lei Dong; Chao Shen; Stephen Arnovitz; Bryan Ulrich; Jiuwei Lu; Hengyou Weng; Rui Su; Huilin Huang; Yungui Wang; Chenying Li; Xi Qin; James C. Mulloy; Yi Zheng; Jiajie Diao; Jie Jin; Chong Li
The original version of this Article contained an error in the spelling of the author James C. Mulloy, which was incorrectly given as James Mulloy. This has now been corrected in both the PDF and HTML versions of the Article.