Stephen Arnovitz
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen Arnovitz.
Blood | 2012
Zejuan Li; Hao Huang; Yuanyuan Li; Xi Jiang; Ping Chen; Stephen Arnovitz; Michael D. Radmacher; Kati Maharry; Abdel G. Elkahloun; Xinan Yang; Chunjiang He; Miao He; Zhiyu Zhang; Konstanze Döhner; Mary Beth Neilly; Colles Price; Yves A. Lussier; Yanming Zhang; Richard A. Larson; Michelle M. Le Beau; Michael A. Caligiuri; Lars Bullinger; Ruud Delwel; Bob Löwenberg; Paul Liu; Guido Marcucci; Clara D. Bloomfield; Janet D. Rowley; Jianjun Chen
Increased expression levels of miR-181 family members have been shown to be associated with favorable outcome in patients with cytogenetically normal acute myeloid leukemia. Here we show that increased expression of miR-181a and miR-181b is also significantly (P < .05; Cox regression) associated with favorable overall survival in cytogenetically abnormal AML (CA-AML) patients. We further show that up-regulation of a gene signature composed of 4 potential miR-181 targets (including HOXA7, HOXA9, HOXA11, and PBX3), associated with down-regulation of miR-181 family members, is an independent predictor of adverse overall survival on multivariable testing in analysis of 183 CA-AML patients. The independent prognostic impact of this 4-homeobox-gene signature was confirmed in a validation set of 271 CA-AML patients. Furthermore, our in vitro and in vivo studies indicated that ectopic expression of miR-181b significantly promoted apoptosis and inhibited viability/proliferation of leukemic cells and delayed leukemogenesis; such effects could be reversed by forced expression of PBX3. Thus, the up-regulation of the 4 homeobox genes resulting from the down-regulation of miR-181 family members probably contribute to the poor prognosis of patients with nonfavorable CA-AML. Restoring expression of miR-181b and/or targeting the HOXA/PBX3 pathways may provide new strategies to improve survival substantially.
Cancer Cell | 2017
Zejuan Li; Hengyou Weng; Rui Su; Xiaocheng Weng; Zhixiang Zuo; Chenying Li; Huilin Huang; Sigrid Nachtergaele; Lei Dong; Chao Hu; Xi Qin; Lichun Tang; Yungui Wang; Gia-Ming Hong; Hao Huang; Xiao Wang; Ping Chen; Sandeep Gurbuxani; Stephen Arnovitz; Yuanyuan Li; Shenglai Li; Jennifer Strong; Mary Beth Neilly; Richard A. Larson; Xi Jiang; Pumin Zhang; Jie Jin; Chuan He; Jianjun Chen
N6-Methyladenosine (m6A) represents the most prevalent internal modification in mammalian mRNAs. Despite its functional importance in various fundamental bioprocesses, the studies of m6A in cancer have been limited. Here we show that FTO, as an m6A demethylase, plays a critical oncogenic role in acute myeloid leukemia (AML). FTO is highly expressed in AMLs with t(11q23)/MLL rearrangements, t(15;17)/PML-RARA, FLT3-ITD, and/or NPM1 mutations. FTO enhances leukemic oncogene-mediated cell transformation and leukemogenesis, and inhibits all-trans-retinoic acid (ATRA)-induced AML cell differentiation, through regulating expression of targets such as ASB2 and RARA by reducing m6A levels in these mRNA transcripts. Collectively, our study demonstrates the functional importance of the m6A methylation and the corresponding proteins in cancer, and provides profound insights into leukemogenesis and drug response.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Hao Huang; Xi Jiang; Zejuan Li; Yuanyuan Li; Chun-Xiao Song; Chunjiang He; Miao Sun; Ping Chen; Sandeep Gurbuxani; Jiapeng Wang; Gia Ming Hong; Abdel G. Elkahloun; Stephen Arnovitz; Jinhua Wang; Keith E. Szulwach; Li Lin; Craig R Street; Mark Wunderlich; Meelad M. Dawlaty; Mary Beth Neilly; Rudolf Jaenisch; Feng Chun Yang; James C. Mulloy; Peng Jin; Paul Liu; Janet D. Rowley; Mingjiang Xu; Chuan He; Jianjun Chen
The ten-eleven translocation 1 (TET1) gene is the founding member of the TET family of enzymes (TET1/2/3) that convert 5-methylcytosine to 5-hydroxymethylcytosine. Although TET1 was first identified as a fusion partner of the mixed lineage leukemia (MLL) gene in acute myeloid leukemia carrying t(10,11), its definitive role in leukemia is unclear. In contrast to the frequent down-regulation (or loss-of-function mutations) and critical tumor-suppressor roles of the three TET genes observed in various types of cancers, here we show that TET1 is a direct target of MLL-fusion proteins and is significantly up-regulated in MLL-rearranged leukemia, leading to a global increase of 5-hydroxymethylcytosine level. Furthermore, our both in vitro and in vivo functional studies demonstrate that Tet1 plays an indispensable oncogenic role in the development of MLL-rearranged leukemia, through coordination with MLL-fusion proteins in regulating their critical cotargets, including homeobox A9 (Hoxa9)/myeloid ecotropic viral integration 1 (Meis1)/pre-B-cell leukemia homeobox 3 (Pbx3) genes. Collectively, our data delineate an MLL-fusion/Tet1/Hoxa9/Meis1/Pbx3 signaling axis in MLL-rearranged leukemia and highlight TET1 as a potential therapeutic target in treating this presently therapy-resistant disease.
Cancer Cell | 2012
Xi Jiang; Hao Huang; Zejuan Li; Yuanyuan Li; Xiao Wang; Sandeep Gurbuxani; Ping Chen; Chunjiang He; Dewen You; Shuodan Zhang; Jinhua Wang; Stephen Arnovitz; Abdel G. Elkahloun; Colles Price; Gia Ming Hong; Haomin Ren; Rejani B. Kunjamma; Mary Beth Neilly; Jonathan M. Matthews; Mengyi Xu; Richard A. Larson; Michelle M. Le Beau; Robert K. Slany; Paul Liu; Jun Lu; Jiwang Zhang; Chuan He; Jianjun Chen
Expression of microRNAs (miRNAs) is under stringent regulation at both transcriptional and posttranscriptional levels. Disturbance at either level could cause dysregulation of miRNAs. Here, we show that MLL fusion proteins negatively regulate production of miR-150, an miRNA widely repressed in acute leukemia, by blocking miR-150 precursors from being processed to mature miRNAs through MYC/LIN28 functional axis. Forced expression of miR-150 dramatically inhibited leukemic cell growth and delayed MLL-fusion-mediated leukemogenesis, likely through targeting FLT3 and MYB and thereby interfering with the HOXA9/MEIS1/FLT3/MYB signaling network, which in turn caused downregulation of MYC/LIN28. Collectively, we revealed a MLL-fusion/MYC/LIN28⊣miR-150⊣FLT3/MYB/HOXA9/MEIS1 signaling circuit underlying the pathogenesis of leukemia, where miR-150 functions as a pivotal gatekeeper and its repression is required for leukemogenesis.
Nature Communications | 2011
Zejuan Li; Hao Huang; Ping Chen; Miao He; Yuanyuan Li; Stephen Arnovitz; Xi Jiang; Chunjiang He; Elizabeth Hyjek; Jun Zhang; Zhiyu Zhang; Abdel G. Elkahloun; Donglin Cao; Chen Shen; Mark Wunderlich; Yungui Wang; Mary Beth Neilly; Jie Jin; Minjie Wei; Jun Lu; Ruud Delwel; Bob Löwenberg; Michelle M. Le Beau; James W. Vardiman; James C. Mulloy; Nancy J. Zeleznik-Le; Paul Liu; Jiwang Zhang; Jianjun Chen
HOXA9 and MEIS1 have essential oncogenic roles in mixed lineage leukaemia (MLL)-rearranged leukaemia. Here we show that they are direct targets of miRNA-196b, a microRNA (miRNA) located adjacent to and co-expressed with HOXA9, in MLL-rearranged leukaemic cells. Forced expression of miR-196b significantly delays MLL-fusion-mediated leukemogenesis in primary bone marrow transplantation through suppressing Hoxa9/Meis1 expression. However, ectopic expression of miR-196b results in more aggressive leukaemic phenotypes and causes much faster leukemogenesis in secondary transplantation than MLL fusion alone, likely through the further repression of Fas expression, a proapoptotic gene downregulated in MLL-rearranged leukaemia. Overexpression of FAS significantly inhibits leukemogenesis and reverses miR-196b-mediated phenotypes. Targeting Hoxa9/Meis1 and Fas by miR-196b is probably also important for normal haematopoiesis. Thus, our results uncover a previously unappreciated miRNA-regulation mechanism by which a single miRNA may target both oncogenes and tumour suppressors, simultaneously, or, sequentially, in tumourigenesis and normal development per cell differentiation, indicating that miRNA regulation is much more complex than previously thought. HOX9AandMEIS1are key oncogenes in MLL-rearranged leukaemia. miRNA-196b is shown here to directly suppress their expression and delay MLL-fusion-mediated leukaemia, but to also cause an aggressive leukaemia phenotype when expressed ectopically, suggesting that it targets tumour suppressors as well.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Xi Jiang; Hao Huang; Zejuan Li; Chunjiang He; Yuanyuan Li; Ping Chen; Sandeep Gurbuxani; Stephen Arnovitz; Gia Ming Hong; Colles Price; Haomin Ren; Rejani B. Kunjamma; Mary Beth Neilly; Justin Salat; Mark Wunderlich; Robert K. Slany; Yanming Zhang; Richard A. Larson; Michelle M. Le Beau; James C. Mulloy; Janet D. Rowley; Jianjun Chen
Acute myeloid leukemia (AML) is a heterogeneous group of hematopoietic malignancies with variable response to treatment. AMLs bearing MLL (mixed lineage leukemia) rearrangements are associated with intermediate or poor survival. MicroRNAs (miRNAs), a class of small noncoding RNAs, have been postulated to be important gene expression regulators virtually in all biological processes, including leukemogenesis. Through a large-scale, genome-wide miRNA expression profiling assay of 85 human AML and 15 normal control samples, we show that among 48 miRNAs that are significantly differentially expressed between MLL- and non–MLL-rearranged AML samples, only one (miR-495) is expressed at a lower level in MLL-rearranged AML than in non–MLL-rearranged AML; meanwhile, miR-495 is also significantly down-regulated in MLL-rearranged AML samples compared with normal control samples. Through in vitro colony-forming/replating assays and in vivo bone marrow transplantation studies, we show that forced expression of miR-495 significantly inhibits MLL-fusion-mediated cell transformation in vitro and leukemogenesis in vivo. In human leukemic cells carrying MLL rearrangements, ectopic expression of miR-495 greatly inhibits cell viability and increases cell apoptosis. Furthermore, our studies demonstrate that PBX3 and MEIS1 are two direct target genes of miR-495, and forced expression of either of them can reverse the effects of miR-495 overexpression on inhibiting cell viability and promoting apoptosis of human MLL-rearranged leukemic cells. Thus, our data indicate that miR-495 likely functions as a tumor suppressor in AML with MLL rearrangements by targeting essential leukemia-related genes.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Ping Chen; Colles Price; Zejuan Li; Yuanyuan Li; Donglin Cao; Anissa Wiley; Chunjiang He; Sandeep Gurbuxani; Rejani B. Kunjamma; Hao Huang; Xi Jiang; Stephen Arnovitz; Mengyi Xu; Gia Ming Hong; Abdel G. Elkahloun; Mary Beth Neilly; Mark Wunderlich; Richard A. Larson; Michelle M. Le Beau; James C. Mulloy; Paul Liu; Janet D. Rowley; Jianjun Chen
MicroRNAs (miRNAs), small noncoding RNAs that regulate target gene mRNAs, are known to contribute to pathogenesis of cancers. Acute myeloid leukemia (AML) is a group of heterogeneous hematopoietic malignancies with various chromosomal and/or molecular abnormalities. AML with chromosomal translocations involving the mixed lineage leukemia (MLL) gene are usually associated with poor survival. In the present study, through a large-scale, genomewide miRNA expression assay, we show that microRNA-9 (miR-9) is the most specifically up-regulated miRNA in MLL-rearranged AML compared with both normal control and non–MLL-rearranged AML. We demonstrate that miR-9 is a direct target of MLL fusion proteins and can be significantly up-regulated in expression by the latter in human and mouse hematopoietic stem/progenitor cells. Depletion of endogenous miR-9 expression by an appropriate antagomiR can significantly inhibit cell growth/viability and promote apoptosis in human MLL-rearranged AML cells, and the opposite is true when expression of miR-9 is forced. Blocking endogenous miR-9 function by anti-miRNA sponge can significantly inhibit, whereas forced expression of miR-9 can significantly promote, MLL fusion–induced immortalization/transformation of normal mouse bone marrow progenitor cells in vitro. Furthermore, forced expression of miR-9 can significantly promote MLL fusion–mediated leukemogenesis in vivo. In addition, a group of putative target genes of miR-9 exhibited a significant inverse correlation of expression with miR-9 in a series of leukemia sample sets, suggesting that they are potential targets of miR-9 in MLL-rearranged AML. Collectively, our data demonstrate that miR-9 is a critical oncomiR in MLL-rearranged AML and can serve as a potential therapeutic target to treat this dismal disease.
Blood | 2013
Zejuan Li; Zhiyu Zhang; Yuanyuan Li; Stephen Arnovitz; Ping Chen; Hao Huang; Xi Jiang; Gia Ming Hong; Rejani B. Kunjamma; Haomin Ren; Chunjiang He; Chong-Zhi Wang; Abdel G. Elkahloun; Peter J. M. Valk; Konstanze Döhner; Mary Beth Neilly; Lars Bullinger; Ruud Delwel; Bob Löwenberg; Paul Liu; Richard Morgan; Janet D. Rowley; Chun-Su Yuan; Jianjun Chen
Although PBX proteins are known to increase DNA-binding/transcriptional activity of HOX proteins through their direct binding, the functional importance of their interaction in leukemogenesis is unclear.We recently reported that overexpression of a 4-homeobox-gene signature (ie, PBX3/HOXA7/HOXA9/HOXA11) is an independent predictor of poor survival in patients with cytogenetically abnormal acute myeloid leukemia (CA-AML). Here we show that it is PBX3, but not PBX1 or PBX2, that is consistently coexpressed with HOXA9 in various subtypes of CA-AML, particularly MLL-rearranged AML, and thus appears as a potential pathologic cofactor of HOXA9 in CA-AML. We then show that depletion of endogenous Pbx3 expression by shRNA significantly inhibits MLL-fusion-mediated cell transformation, and coexpressed PBX3 exhibits a significantly synergistic effect with HOXA9 in promoting cell transformation in vitro and leukemogenesis in vivo. Furthermore, as a proof of concept, we show that a small peptide, namely HXR9, which was developed to specifically disrupt the interactions between HOX and PBX proteins, can selectively kill leukemic cells with overexpression of HOXA/PBX3 genes. Collectively, our data suggest that PBX3 is a critical cofactor of HOXA9 in leukemogenesis, and targeting their interaction is a feasible strategy to treat presently therapy resistant CA-AML (eg, MLL-rearranged leukemia) in which HOXA/PBX3 genes are overexpressed.
Nature Communications | 2016
Xi Jiang; Chao Hu; Stephen Arnovitz; Jason Bugno; Miao Yu; Zhixiang Zuo; Ping Chen; Hao Huang; Bryan Ulrich; Sandeep Gurbuxani; Hengyou Weng; Jennifer Strong; Yungui Wang; Yuanyuan Li; Justin Salat; Shenglai Li; Abdel G. Elkahloun; Yang Yang; Mary Beth Neilly; Richard A. Larson; Michelle M. Le Beau; Tobias Herold; Stefan K. Bohlander; Paul Liu; Jiwang Zhang; Zejuan Li; Chuan He; Jie Jin; Seungpyo Hong; Jianjun Chen
MicroRNAs are subject to precise regulation and have key roles in tumorigenesis. In contrast to the oncogenic role of miR-22 reported in myelodysplastic syndrome (MDS) and breast cancer, here we show that miR-22 is an essential anti-tumour gatekeeper in de novo acute myeloid leukaemia (AML) where it is significantly downregulated. Forced expression of miR-22 significantly suppresses leukaemic cell viability and growth in vitro, and substantially inhibits leukaemia development and maintenance in vivo. Mechanistically, miR-22 targets multiple oncogenes, including CRTC1, FLT3 and MYCBP, and thus represses the CREB and MYC pathways. The downregulation of miR-22 in AML is caused by TET1/GFI1/EZH2/SIN3A-mediated epigenetic repression and/or DNA copy-number loss. Furthermore, nanoparticles carrying miR-22 oligos significantly inhibit leukaemia progression in vivo. Together, our study uncovers a TET1/GFI1/EZH2/SIN3A/miR-22/CREB-MYC signalling circuit and thereby provides insights into epigenetic/genetic mechanisms underlying the pathogenesis of AML, and also highlights the clinical potential of miR-22-based AML therapy.
Genome Research | 2014
Lei Zhao; Ming-an Sun; Zejuan Li; Xue Bai; Miao Yu; Min Wang; Liji Liang; Xiaojian Shao; Stephen Arnovitz; Qianfei Wang; Chuan He; Xuemei Lu; Jianjun Chen; Hehuang Xie
The faithful transmission of DNA methylation patterns through cell divisions is essential for the daughter cells to retain a proper cell identity. To achieve a comprehensive assessment of methylation fidelity, we implemented a genome-scale hairpin bisulfite sequencing approach to generate methylation data for DNA double strands simultaneously. We show here that methylation fidelity increases globally during differentiation of mouse embryonic stem cells (mESCs), and is particularly high in the promoter regions of actively expressed genes and positively correlated with active histone modification marks and binding of transcription factors. The majority of intermediately (40%-60%) methylated CpG dinucleotides are hemi-methylated and have low methylation fidelity, particularly in the differentiating mESCs. While 5-hmC and 5-mC tend to coexist, there is no significant correlation between 5-hmC levels and methylation fidelity. Our findings may shed new light on our understanding of the origins of methylation variations and the mechanisms underlying DNA methylation transmission.