Henk J. Schouten
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henk J. Schouten.
EMBO Reports | 2006
Henk J. Schouten; Frans A. Krens; E. Jacobsen
![][1] ![][2] ![][3] The testing and release of genetically modified organisms (GMOs)—in particular GM plants—is tightly regulated internationally to prevent any negative effects on the environment or human health. However, these regulations are based on transgenic organisms and do not discriminate between transgenic plants and cisgenic plants, although we believe that they are fundamentally different (see sidebarNow, cisgenic plants fall under regulations designed for transgenic organisms, possibly because there have not yet been any applications for the approval of the deliberate release of cisgenic plants into the environment. Definitions of key terms in relation to plants Cisgenesis is the genetic modification of a recipient plant with a natural gene from a crossable—sexually compatible—plant. Such a gene includes its introns and is flanked by its native promoter and terminator in the normalsense orientation.Cisgenic plants can harbour one or more cisgenes, but they do not contain any transgenes. Transgenesis is the genetic modification of a recipient plant with one or more genes from any non‐plant organism, or from a donor plant that is sexually incompatible with the recipient plant. This includes gene sequences of any origin in the anti‐sense orientation, any artificial combination of a coding sequence and a regulatory sequence, such as a promoter from another gene, or a synthetic gene. Traditional breeding encompasses all plant breeding methods that do not fall under current GMO regulations.As the European legal framework defines GMOs and specifies various breeding techniques that are excluded from the GMO regulations,we use this framework as a starting point, particularly the European Directive 2001/18/EC on the deliberate release of GMOs into the environment (European Parliament, 2001). Excluded from this GMO Directive are longstanding cross breeding, in vitro fertilization, polyploidy induction,mutagenesis and fusion of protoplasts from sexually compatible plants (European Parliament, 2001). Although transgenesis and cisgenesis both use the same genetic … [1]: /embed/graphic-1.gif [2]: /embed/graphic-2.gif [3]: /embed/graphic-3.gif
The Plant Cell | 2009
Richard V. Espley; Cyril Brendolise; David Chagné; Sumathi Kutty-Amma; Sol Green; Richard K. Volz; Jo Putterill; Henk J. Schouten; Susan E. Gardiner; Roger P. Hellens; Andrew C. Allan
Mutations in the genes encoding for either the biosynthetic or transcriptional regulation of the anthocyanin pathway have been linked to color phenotypes. Generally, this is a loss of function resulting in a reduction or a change in the distribution of anthocyanin. Here, we describe a rearrangement in the upstream regulatory region of the gene encoding an apple (Malus × domestica) anthocyanin-regulating transcription factor, MYB10. We show that this modification is responsible for increasing the level of anthocyanin throughout the plant to produce a striking phenotype that includes red foliage and red fruit flesh. This rearrangement is a series of multiple repeats, forming a minisatellite-like structure that comprises five direct tandem repeats of a 23-bp sequence. This MYB10 rearrangement is present in all the red foliage apple varieties and species tested but in none of the white fleshed varieties. Transient assays demonstrated that the 23-bp sequence motif is a target of the MYB10 protein itself, and the number of repeat units correlates with an increase in transactivation by MYB10 protein. We show that the repeat motif is capable of binding MYB10 protein in electrophoretic mobility shift assays. Taken together, these results indicate that an allelic rearrangement in the promoter of MYB10 has generated an autoregulatory locus, and this autoregulation is sufficient to account for the increase in MYB10 transcript levels and subsequent ectopic accumulation of anthocyanins throughout the plant.
Molecular Genetics and Genomics | 2005
Alexander H. J. Wittenberg; Theo van der Lee; Cyril Cayla; Andrzej Kilian; Richard G. F. Visser; Henk J. Schouten
Diversity Arrays Technology (DArT) is a microarray-based DNA marker technique for genome-wide discovery and genotyping of genetic variation. DArT allows simultaneous scoring of hundreds of restriction site based polymorphisms between genotypes and does not require DNA sequence information or site-specific oligonucleotides. This paper demonstrates the potential of DArT for genetic mapping by validating the quality and molecular basis of the markers, using the model plant Arabidopsis thaliana. Restriction fragments from a genomic representation of the ecotype Landsberg erecta (Ler) were amplified by PCR, individualized by cloning and spotted onto glass slides. The arrays were then hybridized with labeled genomic representations of the ecotypes Columbia (Col) and Ler and of individuals from an F2 population obtained from a Col × Ler cross. The scoring of markers with specialized software was highly reproducible and 107 markers could unambiguously be ordered on a genetic linkage map. The marker order on the genetic linkage map coincided with the order on the DNA sequence map. Sequencing of the Ler markers and alignment with the available Col genome sequence confirmed that the polymorphism in DArT markers is largely a result of restriction site polymorphisms.
Nature Biotechnology | 2006
Henk J. Schouten; Frans A. Krens; E. Jacobsen
1. Andow, D.A. & Hilbeck, A. BioScience 54, 637–649 (2004). 2. EuropaBio. Safety Assessment of GM crops. Document 1.1 Substantial Equivalence—Maize (EuropaBio, Brussels, 2003). <http://www.projectgroepbiotechnologie.nl/download/SubstantialEquivalence-Maize. pdf> (accessed 20 May 2006). 3. Bradford, K.J., Van Deynze, A., Gutterson, N., Parrott, W. & Strauss, S.H. Nat. Biotechnol. 23, 439–444 (2005). 4. Environmental Protection Agency. Guidelines for Ecological Risk Assessment. EPA 630/R-95-002F (Environmental Protection Agency, Washington, DC, USA, 1998). 5. Hill, R.A. & Sendashonga, C. Environ. Biosafety Res. 2, 81–88 (2003). 6. European Food Safety Agency. Eur. Food Safety Agency J. 99, 1–94 (2004). 7. Rose, R.I. IOBC/wprs Bull. 29 (5), 145–152 (2006). 8. Prasifka, J.R., Hellmich, R.L., Dively, G.P. & Lewis, L.C. Environ. Entomol. 34, 1181–1192 (2005). 9. Croft, B.A. Arthropod Biological Control Agents and Pesticides (John Wiley & Sons, New York, USA, 1990). 10. Birch et al. in Environmental Risk Assessment of Transgenic Organisms: A Case Study of Bt Maize in Kenya (eds. Hilbeck, A. & Andow, D.A.) 117–185 (CAB International, Wallingford, UK, 2004). 11. Vogt, H. et al. in Guidelines to Evaluate Side-effects of Plant Protection Products to Non-Target Arthropods (ed. Candolfi, M.P. et al.) 27–44 (IOBC/WPRS, Gent, 2000). 12. Dutton, A., Klein, H., Romeis, J. & Bigler, F. Ecol. Entomol. 27, 441–447 (2002). 13. Obrist, L., Dutton, A., Romeis, J. & Bigler, F. BioControl 51, 31–48 (2006). 14. <http://www.bauernverband.ch/de/markt_preise_statistik/pflanzen/se_2004_0217.pdf> (accessed 20 May 2006). 15. <http://www.biosuisse.ch/de/produkte/ackerkulturen/aktuellesvommarkt2.php> (accessed 20 May 2006).
PLOS ONE | 2009
Alexander H. J. Wittenberg; Theo van der Lee; Sarrah Ben M'Barek; S.B. Ware; Stephen B. Goodwin; Andrzej Kilian; Richard G. F. Visser; Gert H. J. Kema; Henk J. Schouten
Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because these chromosomes are not present universally in the genome of the organism they can be considered to be dispensable. To analyze the meiotic transmission of unequal chromosome numbers, two segregating populations were generated by crossing genetically unrelated parent isolates originating from Algeria and The Netherlands that had pathogenicity towards durum or bread wheat, respectively. Detailed genetic analyses of these progenies using high-density mapping (1793 DArT, 258 AFLP and 25 SSR markers) and graphical genotyping revealed that M. graminicola has up to eight dispensable chromosomes, the highest number reported in filamentous fungi. These chromosomes vary from 0.39 to 0.77 Mb in size, and represent up to 38% of the chromosomal complement. Chromosome numbers among progeny isolates varied widely, with some progeny missing up to three chromosomes, while other strains were disomic for one or more chromosomes. Between 15–20% of the progeny isolates lacked one or more chromosomes that were present in both parents. The two high-density maps showed no recombination of dispensable chromosomes and hence, their meiotic processing may require distributive disjunction, a phenomenon that is rarely observed in fungi. The maps also enabled the identification of individual twin isolates from a single ascus that shared the same missing or doubled chromosomes indicating that the chromosomal polymorphisms were mitotically stable and originated from nondisjunction during the second division and, less frequently, during the first division of fungal meiosis. High genome plasticity could be among the strategies enabling this versatile pathogen to quickly overcome adverse biotic and abiotic conditions in wheat fields.
Theoretical and Applied Genetics | 2005
F. Calenge; C.G. van der Linden; W.E. van de Weg; Henk J. Schouten; G. van Arkel; C. Denancé; Charles-Eric Durel
We used a new method called nucleotide-binding site (NBS) profiling to identify and map resistance gene analogues (RGAs) in apple. This method simultaneously allows the amplification and the mapping of genetic markers anchored in the conserved NBS-encoding domain of plant disease resistance genes. Ninety-four individuals belonging to an F1 progeny derived from a cross between the apple cultivars ‘Discovery’ and ‘TN10-8’ were studied. Two degenerate primers designed from the highly conserved P-loop motif within the NBS domain were used together with adapter primers. Forty-three markers generated with NBS profiling could be mapped in this progeny. After sequencing, 23 markers were identified as RGAs, based on their homologies with known resistance genes or NBS/leucine-rich-repeat-like genes. Markers were mapped on 10 of the 17 linkage groups of the apple genetic map used. Most of these markers were organized in clusters. Twenty-five markers mapped close to major genes or quantitative trait loci for resistance to scab and mildew previously identified in different apple progenies. Several markers could become efficient tools for marker-assisted selection once converted into breeder-friendly markers. This study demonstrates the efficiency of the NBS-profiling method for generating RGA markers for resistance loci in apple.
Theoretical and Applied Genetics | 2005
Z. S. Gao; W.E. van de Weg; Jan G. Schaart; Henk J. Schouten; D. H. Tran; L. P. Kodde; I.M. van der Meer; A. H. M. van der Geest; Jan Kodde; Heimo Breiteneder; Karin Hoffmann-Sommergruber; Dirk Bosch; L.J.W.J. Gilissen
Fresh apples can cause birch pollen-related food allergy in northern and central European populations, primarily because of the presence of Mal d 1, the major apple allergen that is cross-reactive to the homologous and sensitizing allergen Bet v 1 from birch. Apple cultivars differ significantly in their allergenicity. Knowledge of the genetic basis of these differences would direct breeding for hypoallergenic cultivars. The PCR genomic cloning and sequencing were performed on two cultivars, Prima and Fiesta, which resulted in 37 different Mal d 1 gDNA sequences. Based on the mapping of sequence-specific molecular markers, these sequences appeared to represent 18 Mal d 1 genes. Sixteen genes were located in two clusters, one cluster with seven genes on linkage group (LG) 13, and the other cluster with nine genes on the homoeologous LG 16. One gene was mapped on LG 6, and one remained unmapped. According to sequence identity, these 18 genes could be subdivided into four subfamilies. Subfamilies I–III had an intron of different size that was subfamily and gene-specific. Subfamily IV consisted of 11 intronless genes. The deduced amino acid sequence identity varied from 65% to 81% among subfamilies, from 82% to 100% among genes within a subfamily, and from 97.5% to 100% among alleles of one gene. This study provides a better understanding of the genetics of Mal d 1 and the basis for further research on the occurrence of allelic diversity among cultivars in relation to allergenicity and their biological functions.
Journal of Biotechnology | 2011
Thalia Vanblaere; Iris Szankowski; Jan G. Schaart; Henk J. Schouten; Henryk Flachowsky; Giovanni A. L. Broggini; Cesare Gessler
Cisgenesis represents a step toward a new generation of GM crops. The lack of selectable genes (e.g. antibiotic or herbicide resistance) in the final product and the fact that the inserted gene(s) derive from organisms sexually compatible with the target crop should rise less environmental concerns and increase consumers acceptance. Here we report the generation of a cisgenic apple plant by inserting the endogenous apple scab resistance gene HcrVf2 under the control of its own regulatory sequences into the scab susceptible apple cultivar Gala. A previously developed method based on Agrobacterium-mediated transformation combined with a positive and negative selection system and a chemically inducible recombination machinery allowed the generation of apple cv. Gala carrying the scab resistance gene HcrVf2 under its native regulatory sequences and no foreign genes. Three cisgenic lines were chosen for detailed investigation and were shown to carry a single T-DNA insertion and express the target gene HcrVf2. This is the first report of the generation of a true cisgenic plant.
BMC Plant Biology | 2010
Fabrizio Costa; Rob Alba; Henk J. Schouten; V. Soglio; L. Gianfranceschi; Sara Serra; Stefano Musacchi; Silviero Sansavini; Guglielmo Costa; Zhangjun Fei; James J. Giovannoni
BackgroundFruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-Methylcyclopropene.ResultsTo gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies), we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated.The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database) and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies.The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato) microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening.ConclusionOur combined strategy based on microarray hybridization enabled transcriptome characterization during normal climacteric apple ripening, as well as definition of ethylene-dependent transcriptome changes. Comparison with tomato fruit maturation and ethylene responsive transcriptome activity facilitated identification of putative conserved orthologous ripening-related genes, which serve as an initial set of candidates for assessing conservation of gene activity across genomes of fruit bearing plant species.
Trends in Plant Science | 2008
Henk J. Schouten; E. Jacobsen
In a recent issue of Trends in Plant Science, Caius Rommens et al. [1] provided a valuable overview of intragenic modification in the context of other plant breeding approaches. These authors defined an intragenic plant as a genetically modified plant that only contains genetic elements from within the sexual compatibility group. Intragenesis, an innovative gene technology breeding method, creates new genes with desired traits by isolating functional genetic elements such as promoters, coding parts or terminators of existing genes, rearranging them in vitro, and inserting this new ‘intragenic’ DNA combination back into the plant.