Henne Holstege
Netherlands Cancer Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henne Holstege.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Xiaoling Liu; Henne Holstege; Hanneke van der Gulden; Marcelle Treur-Mulder; John Zevenhoven; Arno Velds; Ron M. Kerkhoven; Martin H. van Vliet; Lodewyk F. A. Wessels; Johannes L. Peterse; Anton Berns; Jos Jonkers
Women carrying germ-line mutations in BRCA1 are strongly predisposed to developing breast cancers with characteristic features also observed in sporadic basal-like breast cancers. They appear as high-grade tumors with high proliferation rates and pushing borders. On the molecular level, they are negative for hormone receptors and ERBB2, display frequent TP53 mutations, and express basal epithelial markers. To study the role of BRCA1 and P53 loss of function in breast cancer development, we generated conditional mouse models with tissue-specific mutation of Brca1 and/or p53 in basal epithelial cells. Somatic loss of both BRCA1 and p53 resulted in the rapid and efficient formation of highly proliferative, poorly differentiated, estrogen receptor-negative mammary carcinomas with pushing borders and increased expression of basal epithelial markers, reminiscent of human basal-like breast cancer. BRCA1- and p53-deficient mouse mammary tumors exhibit dramatic genomic instability, and their molecular signatures resemble those of human BRCA1-mutated breast cancers. Thus, these tumors display important hallmarks of hereditary breast cancers in BRCA1-mutation carriers.
Nucleic Acids Research | 2005
Paul van den IJssel; Marianne Tijssen; Suet-Feung Chin; Paul P. Eijk; Beatriz Carvalho; Erik S. Hopmans; Henne Holstege; Dhinoth Kumar Bangarusamy; Jos Jonkers; Gerrit A. Meijer; Carlos Caldas; Bauke Ylstra
Array-based comparative genomic hybridization is a high resolution method for measuring chromosomal copy number changes. Here we present a validated protocol using in-house spotted oligonucleotide libraries for array comparative genomic hybridization (CGH). This oligo array CGH platform yields reproducible results and is capable of detecting single copy gains, multi-copy amplifications as well as homozygous and heterozygous deletions as small as 100 kb with high resolution. A human oligonucleotide library was printed on amine binding slides. Arrays were hybridized using a hybstation and analysed using BlueFuse feature extraction software, with >95% of spots passing quality control. The protocol allows as little as 300 ng of input DNA and a 90% reduction of Cot-1 DNA without compromising quality. High quality results have also been obtained with DNA from archival tissue. Finally, in addition to human oligo arrays, we have applied the protocol successfully to mouse oligo arrays. We believe that this oligo-based platform using ‘off-the-shelf’ oligo libraries provides an easy accessible alternative to BAC arrays for CGH, which is cost-effective, available at high resolution and easily implemented for any sequenced organism without compromising the quality of the results.
Clinical Cancer Research | 2008
Bastiaan Evers; Rinske Drost; Eva Schut; Michiel de Bruin; Eline van der Burg; Patrick W. B. Derksen; Henne Holstege; Xiaoling Liu; Ellen van Drunen; H. Berna Beverloo; Graeme Cameron Murray Smith; Niall Morrison Barr Martin; Alan Lau; Mark J. O'Connor; Jos Jonkers
Purpose: To assess efficacy of the novel, selective poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor AZD2281 against newly established BRCA2-deficient mouse mammary tumor cell lines and to determine potential synergy between AZD2281 and cisplatin. Experimental Design: We established and thoroughly characterized a panel of clonal cell lines from independent BRCA2-deficient mouse mammary tumors and BRCA2-proficient control tumors. Subsequently, we assessed sensitivity of these lines to conventional cytotoxic drugs and the novel PARP inhibitor AZD2281. Finally, in vitro combination studies were done to investigate interaction between AZD2281 and cisplatin. Results: Genetic, transcriptional, and functional analyses confirmed the successful isolation of BRCA2-deficient and BRCA2-proficient mouse mammary tumor cell lines. Treatment of these cell lines with 11 different anticancer drugs or with γ-irradiation showed that AZD2281, a novel and specific PARP inhibitor, caused the strongest differential growth inhibition of BRCA2-deficient versus BRCA2-proficient mammary tumor cells. Finally, drug combination studies showed synergistic cytotoxicity of AZD2281 and cisplatin against BRCA2-deficient cells but not against BRCA2-proficient control cells. Conclusion: We have successfully established the first set of BRCA2-deficient mammary tumor cell lines, which form an important addition to the existing preclinical models for BRCA-mutated breast cancer. The exquisite sensitivity of these cells to the PARP inhibitor AZD2281, alone or in combination with cisplatin, provides strong support for AZD2281 as a novel targeted therapeutic against BRCA-deficient cancers.
Cancer Research | 2009
Henne Holstege; Simon A. Joosse; Conny T. M. van Oostrom; Petra M. Nederlof; Annemieke de Vries; Jos Jonkers
Approximately half of all hereditary breast cancers are compromised in their DNA repair mechanisms due to loss of BRCA1 or BRCA2 function. Previous research has found a strong correlation between BRCA mutation and TP53 mutation. However, TP53 mutation status is often indirectly assessed by immunohistochemical staining of accumulated p53 protein. We sequenced TP53 exons 2 to 9 in 21 BRCA1-related breast cancers and 37 sporadic breast tumors. Strikingly, all BRCA1-related breast tumors contained TP53 mutations, whereas only half of these tumors stained positive for p53 accumulation. Positive p53 staining correlates with the presence of TP53 hotspot mutations in both BRCA1-related and sporadic breast tumors. However, whereas the majority of sporadic breast tumors that stained negative for p53 accumulation had wild-type TP53, the majority of BRCA1-associated breast tumors that stained negative for p53 accumulation had protein-truncating TP53 mutations (nonsense, frameshift, and splice mutations). Therefore, the strong selection for p53 loss in BRCA1-related tumors is achieved by an increase of protein-truncating TP53 mutations rather than hotspot mutations. Hence, immunohistochemical detection of TP53 mutation could lead to misdiagnosis in approximately half of all BRCA1-related tumors. The presence of deleterious TP53 mutations in most, if not all, BRCA1-related breast cancers suggests that p53 loss of function is essential for BRCA1-associated tumorigenesis. BRCA1-related tumors may therefore be treated not only with drugs that target BRCA1 deficiency [e.g., poly(ADP-ribose) polymerase inhibitors] but also with drugs that selectively target p53-deficient cells. This raises interesting possibilities for combination therapies against BRCA1-deficient breast cancers and BRCA1-like tumors with homologous recombination deficiency.
Clinical Cancer Research | 2010
Bastiaan Evers; Eva Schut; Eline van der Burg; Tanya M. Braumuller; David A. Egan; Henne Holstege; Pauline Edser; David J. Adams; Richard Wade-Martins; Peter Bouwman; Jos Jonkers
Purpose: Hereditary breast cancer is partly explained by germline mutations in BRCA1 and BRCA2. Although patients carry heterozygous mutations, their tumors have typically lost the remaining wild-type allele. Selectively targeting BRCA deficiency may therefore constitute an important therapeutic approach. Clinical trials applying this principle are underway, but it is unknown whether the compounds tested are optimal. It is therefore important to identify alternative compounds that specifically target BRCA deficiency and to test new combination therapies to establish optimal treatment strategies. Experimental Design: We did a high-throughput pharmaceutical screen on BRCA2-deficient mouse mammary tumor cells and isogenic controls with restored BRCA2 function. Subsequently, we validated positive hits in vitro and in vivo using mice carrying BRCA2-deficient mammary tumors. Results: Three alkylators—chlorambucil, melphalan, and nimustine—displayed strong and specific toxicity against BRCA2-deficient cells. In vivo, these showed heterogeneous but generally strong BRCA2-deficient antitumor activity, with melphalan and nimustine doing better than cisplatin and the poly-(ADP-ribose)-polymerase inhibitor olaparib (AZD2281) in this small study. In vitro drug combination experiments showed synergistic interactions between the alkylators and olaparib. Tumor intervention studies combining nimustine and olaparib resulted in recurrence-free survival exceeding 330 days in 3 of 5 animals tested. Conclusions: We generated and validated a platform for identification of compounds with specific activity against BRCA2-deficient cells that translates well to the preclinical setting. Our data call for the re-evaluation of alkylators, especially melphalan and nimustine, alone or in combination with the poly-(ADP-ribose)-polymerase inhibitors, for the treatment of breast cancers with a defective BRCA pathway. Clin Cancer Res; 16(1); 99–108
BMC Cancer | 2010
Henne Holstege; Hugo M. Horlings; Arno Velds; Anita Langerød; Anne Lise Børresen-Dale; Marc J. van de Vijver; Petra M. Nederlof; Jos Jonkers
BackgroundBasal-like breast cancers (BLBC) are aggressive breast cancers for which, so far, no targeted therapy is available because they typically lack expression of hormone receptors and HER2. Phenotypic features of BLBCs, such as clinical presentation and early age of onset, resemble those of breast tumors from BRCA1-mutation carriers. The genomic instability of BRCA1-mutated tumors can be effectively targeted with DNA-damaging agents and poly-(ADP-ribose) polymerase 1 (PARP1) inhibitors. Molecular similarities between BLBCs and BRCA1-mutated tumors may therefore provide predictive markers for therapeutic response of BLBCs.MethodsThere are several known molecular features characteristic for BRCA1-mutated breast tumors: 1) increased numbers of genomic aberrations, 2) a distinct pattern of genomic aberrations, 3) a high frequency of TP53 mutations and 4) a high incidence of complex, protein-truncating TP53 mutations. We compared the frequency of TP53 mutations and the pattern and amount of genomic aberrations between BRCA1-mutated breast tumors, BLBCs and luminal breast tumors by TP53 gene sequencing and array-based comparative genomics hybridization (aCGH) analysis.ResultsWe found that the high incidence of protein truncating TP53 mutations and the pattern and amount of genomic aberrations specific for BRCA1-mutated breast tumors are also characteristic for BLBCs and different from luminal breast tumors.ConclusionsComplex, protein truncating TP53 mutations in BRCA1-mutated tumors may be a direct consequence of genomic instability caused by BRCA1 loss, therefore, the presence of these types of TP53 mutations in sporadic BLBCs might be a hallmark of BRCAness and a potential biomarker for sensitivity to PARP inhibition. Also, our data suggest that a small subset of genomic regions may be used to identify BRCA1-like BLBCs. BLBCs share molecular features that were previously found to be specific for BRCA1-mutated breast tumors. These features might be useful for the identification of tumors with increased sensitivity to (high-dose or dose-dense) alkylating agents and PARP inhibitors.
BMC Cancer | 2010
Henne Holstege; Erik H. van Beers; Arno Velds; Xiaoling Liu; Simon A. Joosse; Sjoerd Klarenbeek; Eva Schut; Ron M. Kerkhoven; Christiaan Klijn; Lodewyk F. A. Wessels; Petra M. Nederlof; Jos Jonkers
BackgroundGenomic gains and losses are a result of genomic instability in many types of cancers. BRCA1- and BRCA2-mutated breast cancers are associated with increased amounts of chromosomal aberrations, presumably due their functions in genome repair. Some of these genomic aberrations may harbor genes whose absence or overexpression may give rise to cellular growth advantage. So far, it has not been easy to identify the driver genes underlying gains and losses. A powerful approach to identify these driver genes could be a cross-species comparison of array comparative genomic hybridization (aCGH) data from cognate mouse and human tumors. Orthologous regions of mouse and human tumors that are commonly gained or lost might represent essential genomic regions selected for gain or loss during tumor development.MethodsTo identify genomic regions that are associated with BRCA1- and BRCA2-mutated breast cancers we compared aCGH data from 130 mouse Brca1Δ/Δ;p53Δ/Δ, Brca2Δ/Δ;p53Δ/Δand p53Δ/Δmammary tumor groups with 103 human BRCA1-mutated, BRCA2-mutated and non-hereditary breast cancers.ResultsOur genome-wide cross-species analysis yielded a complete collection of loci and genes that are commonly gained or lost in mouse and human breast cancer. Principal common CNAs were the well known MYC-associated gain and RB1/INTS6-associated loss that occurred in all mouse and human tumor groups, and the AURKA-associated gain occurred in BRCA2-related tumors from both species. However, there were also important differences between tumor profiles of both species, such as the prominent gain on chromosome 10 in mouse Brca2Δ/Δ;p53Δ/Δtumors and the PIK3CA associated 3q gain in human BRCA1-mutated tumors, which occurred in tumors from one species but not in tumors from the other species. This disparity in recurrent aberrations in mouse and human tumors might be due to differences in tumor cell type or genomic organization between both species.ConclusionsThe selection of the oncogenome during mouse and human breast tumor development is markedly different, apart from the MYC gain and RB1-associated loss. These differences should be kept in mind when using mouse models for preclinical studies.
BMC Research Notes | 2010
Jorma J. de Ronde; Christiaan Klijn; Arno Velds; Henne Holstege; Marcel J. T. Reinders; Jos Jonkers; Lodewyk F. A. Wessels
BackgroundMost approaches used to find recurrent or differential DNA Copy Number Alterations (CNA) in array Comparative Genomic Hybridization (aCGH) data from groups of tumour samples depend on the discretization of the aCGH data to gain, loss or no-change states. This causes loss of valuable biological information in tumour samples, which are frequently heterogeneous. We have previously developed an algorithm, KC-SMART, that bases its estimate of the magnitude of the CNA at a given genomic location on kernel convolution (Klijn et al., 2008). This accounts for the intensity of the probe signal, its local genomic environment and the signal distribution across multiple samples.ResultsHere we extend the approach to allow comparative analyses of two groups of samples and introduce the R implementation of these two approaches. The comparative module allows for a supervised analysis to be performed, to enable the identification of regions that are differentially aberrated between two user-defined classes.We analyzed data from a series of B- and T-cell lymphomas and were able to retrieve all positive control regions (VDJ regions) in addition to a number of new regions. A t-test employing segmented data, that we implemented, was also able to locate all the positive control regions and a number of new regions but these regions were highly fragmented.ConclusionsKC-SMARTR offers recurrent CNA and class specific CNA detection, at different genomic scales, in a single package without the need for additional segmentation. It is memory efficient and runs on a wide range of machines. Most importantly, it does not rely on data discretization and therefore maximally exploits the biological information in the aCGH data.The program is freely available from the Bioconductor website http://www.bioconductor.org/ under the terms of the GNU General Public License.
European Journal of Human Genetics | 2017
Henne Holstege; Sven J. van der Lee; Marc Hulsman; Tsz Hang Wong; Jeroen van Rooij; Marjan M. Weiss; Eva Louwersheimer; Frank J. Wolters; Najaf Amin; André G. Uitterlinden; Albert Hofman; M. Arfan Ikram; John C. van Swieten; Hanne Meijers-Heijboer; Wiesje M. van der Flier; Marcel J. T. Reinders; Cornelia M. van Duijn; Philip Scheltens
Accumulating evidence suggests that genetic variants in the SORL1 gene are associated with Alzheimer disease (AD), but a strategy to identify which variants are pathogenic is lacking. In a discovery sample of 115 SORL1 variants detected in 1908 Dutch AD cases and controls, we identified the variant characteristics associated with SORL1 variant pathogenicity. Findings were replicated in an independent sample of 103 SORL1 variants detected in 3193 AD cases and controls. In a combined sample of the discovery and replication samples, comprising 181 unique SORL1 variants, we developed a strategy to classify SORL1 variants into five subtypes ranging from pathogenic to benign. We tested this pathogenicity screen in SORL1 variants reported in two independent published studies. SORL1 variant pathogenicity is defined by the Combined Annotation Dependent Depletion (CADD) score and the minor allele frequency (MAF) reported by the Exome Aggregation Consortium (ExAC) database. Variants predicted strongly damaging (CADD score >30), which are extremely rare (ExAC-MAF <1 × 10−5) increased AD risk by 12-fold (95% CI 4.2–34.3; P=5 × 10−9). Protein-truncating SORL1 mutations were all unknown to ExAC and occurred exclusively in AD cases. More common SORL1 variants (ExAC-MAF≥1 × 10−5) were not associated with increased AD risk, even when predicted strongly damaging. Findings were independent of gender and the APOE-ɛ4 allele. High-risk SORL1 variants were observed in a substantial proportion of the AD cases analyzed (2%). Based on their effect size, we propose to consider high-risk SORL1 variants next to variants in APOE, PSEN1, PSEN2 and APP for personalized risk assessments in clinical practice.
Journal of Alzheimer's Disease | 2017
Eva Louwersheimer; Petra E. Cohn-Hokke; Yolande A.L. Pijnenburg; Marjan M. Weiss; Erik A. Sistermans; Annemieke Rozemuller; Marc Hulsman; John C. van Swieten; Cock M. van Duijn; Frederik Barkhof; Teddy Koene; Philip Scheltens; Wiesje M. van der Flier; Henne Holstege
Background: The major genetic risk factor for late onset Alzheimer’s disease (AD) is the APOE-ɛ4 allele. However, APOE-ɛ4 homozygosity is not fully penetrant, suggesting co-occurrence of additional genetic variants. Objective: To identify genetic factors that, next to APOE-ɛ4 homozygosity, contribute to the development of AD. Methods: We identified a family with nine AD patients spanning four generations, with an inheritance pattern suggestive of autosomal dominant AD, with no variants in PSEN1, PSEN2, or APP. We collected DNA from four affected and seven unaffected family members and performed exome sequencing on DNA from three affected and one unaffected family members. Results: All affected family members were homozygous for the APOE-ɛ4 allele. Statistical analysis revealed that AD onset in this family was significantly earlier than could be expected based on APOE genotype and gender. Next to APOE-ɛ4 homozygosity, we found that all four affected family members carried a rare variant in the VPS10 domain of the SORL1 gene, associated with AβPP processing and AD risk. Furthermore, three of four affected family members carried a rare variant in the TSHZ3 gene, also associated with AβPP processing. Affected family members presented between 61 and 74 years, with variable presence of microbleeds/cerebral amyloid angiopathy and electroencephalographic abnormalities. Conclusion: We hypothesize that next to APOE-ɛ4 homozygosity, impaired SORL1 protein function, and possibly impaired TSHZ3 function, further disturbed Aβ processing. The convergence of these genetic factors over several generations might clarify the increased AD penetrance and the autosomal dominant-like inheritance pattern of AD as observed in this family.