Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henning Madry is active.

Publication


Featured researches published by Henning Madry.


Knee Surgery, Sports Traumatology, Arthroscopy | 2010

The basic science of the subchondral bone.

Henning Madry; C. Niek van Dijk; Magdalena Mueller-Gerbl

In the past decades, considerable efforts have been made to propose experimental and clinical treatments for articular cartilage defects. Yet, the problem of cartilage defects extending deep in the underlying subchondral bone has not received adequate attention. A profound understanding of the basic anatomic aspects of this particular site, together with the pathophysiology of diseases affecting the subchondral bone is the key to develop targeted and effective therapeutic strategies to treat osteochondral defects. The subchondral bone consists of the subchondral bone plate and the subarticular spongiosa. It is separated by the cement line from the calcified zone of the articular cartilage. A variable anatomy is characteristic for the subchondral region, reflected in differences in thickness, density, and composition of the subchondral bone plate, contour of the tidemark and cement line, and the number and types of channels penetrating into the calcified cartilage. This review aims at providing insights into the anatomy, morphology, and pathology of the subchondral bone. Individual diseases affecting the subchondral bone, such as traumatic osteochondral defects, osteochondritis dissecans, osteonecrosis, and osteoarthritis are also discussed. A better knowledge of the basic science of the subchondral region, together with additional investigations in animal models and patients may translate into improved therapies for articular cartilage defects that arise from or extend into the subchondral bone.


Knee Surgery, Sports Traumatology, Arthroscopy | 2010

The subchondral bone in articular cartilage repair: current problems in the surgical management.

Andreas H. Gomoll; Henning Madry; Gunnar Knutsen; Niek van Dijk; Romain Seil; Mats Brittberg; Elizaveta Kon

As the understanding of interactions between articular cartilage and subchondral bone continues to evolve, increased attention is being directed at treatment options for the entire osteochondral unit, rather than focusing on the articular surface only. It is becoming apparent that without support from an intact subchondral bed, any treatment of the surface chondral lesion is likely to fail. This article reviews issues affecting the entire osteochondral unit, such as subchondral changes after marrow-stimulation techniques and meniscectomy or large osteochondral defects created by prosthetic resurfacing techniques. Also discussed are surgical techniques designed to address these issues, including the use of osteochondral allografts, autologous bone grafting, next generation cell-based implants, as well as strategies after failed subchondral repair and problems specific to the ankle joint. Lastly, since this area remains in constant evolution, the requirements for prospective studies needed to evaluate these emerging technologies will be reviewed.


Gene Therapy | 2005

Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I)

Henning Madry; Gunter Kaul; Magali Cucchiarini; U Stein; David Zurakowski; Klaus Remberger; Michael D. Menger; Dieter Kohn; Stephen B. Trippel

Traumatic articular cartilage lesions have a limited capacity to heal. We tested the hypothesis that overexpression of a human insulin-like growth factor I (IGF-I) cDNA by transplanted articular chondrocytes enhances the repair of full-thickness (osteochondral) cartilage defects in vivo. Lapine articular chondrocytes were transfected with expression plasmid vectors containing the cDNA for the Escherichia coli lacZ gene or the human IGF-I gene and were encapsulated in alginate. The expression patterns of the transgenes in these implants were monitored in vitro for 36 days. Transfected allogeneic chondrocytes in alginate were transplanted into osteochondral defects in the trochlear groove of rabbits. At three and 14 weeks, the quality of articular cartilage repair was evaluated qualitatively and quantitatively. In vitro, IGF-I secretion by implants constructed from IGF-I-transfected chondrocytes and alginate was 123.2±22.3 ng/107 cells/24 h at day 4 post transfection and remained elevated at day 36, the longest time point evaluated. In vivo, transplantation of IGF-I implants improved articular cartilage repair and accelerated the formation of the subchondral bone at both time points compared to lacZ implants. The data indicate that allogeneic chondrocytes, transfected by a nonviral method and cultured in alginate, are able to secrete biologically relevant amounts of IGF-I over a prolonged period of time in vitro. The data further demonstrate that implantation of these composites into deep articular cartilage defects is sufficient to augment cartilage defect repair in vivo. These results suggest that therapeutic growth factor gene delivery using encapsulated and transplanted genetically modified chondrocytes may be applicable to sites of focal articular cartilage damage.


PLOS ONE | 2011

Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging.

Claudia E. Rübe; Andreas Fricke; Thomas Widmann; Tobias Fürst; Henning Madry; Michael Pfreundschuh; Christian Rübe

Background Accumulation of DNA damage leading to adult stem cell exhaustion has been proposed to be a principal mechanism of aging. Here we tested this hypothesis in healthy individuals of different ages by examining unrepaired DNA double-strand breaks (DSBs) in hematopoietic stem/progenitor cells matured in their physiological microenvironment. Methodology/Principal Findings To asses DNA damage accumulation and repair capacities, γH2AX-foci were examined before and after exposure to ionizing irradiation. Analyzing CD34+ and CD34− stem/progenitor cells we observed an increase of endogenous γH2AX-foci levels with advancing donor age, associated with an age-related decline in telomere length. Using combined immunofluorescence and telomere-fluorescence in-situ hybridization we show that γH2AX-foci co-localize consistently with other repair factors such as pATM, MDC1 and 53BP1, but not significantly with telomeres, strongly supporting the telomere-independent origin for the majority of foci. The highest inter-individual variations for non-telomeric DNA damage were observed in middle-aged donors, whereas the individual DSB repair capacity appears to determine the extent of DNA damage accrual. However, analyzing different stem/progenitor subpopulations obtained from healthy elderly (>70 years), we observed an only modest increase in DNA damage accrual, most pronounced in the primitive CD34+CD38−-enriched subfraction, but sustained DNA repair efficiencies, suggesting that healthy lifestyle may slow down the natural aging process. Conclusions/Significance Based on these findings we conclude that age-related non-telomeric DNA damage accrual accompanies physiological stem cell aging in humans. Moreover, aging may alter the functional capacity of human stem cells to repair DSBs, thereby deteriorating an important genome protection mechanism leading to exceeding DNA damage accumulation. However, the great inter-individual variations in middle-aged individuals suggest that additional cell-intrinsic mechanisms and/or extrinsic factors contribute to the age-associated DNA damage accumulation.


Gene Therapy | 2000

Efficient lipid-mediated gene transfer to articular chondrocytes

Henning Madry; Stephen B. Trippel

We examined nonviral, lipid-mediated gene transfer methods as potential tools for efficient transfection of articular chondrocytes. Transfection conditions were determined for primary cultures of normal human articular, osteoarthritic human articular and normal bovine articular chondrocytes using a lacZ reporter gene construct with the commercially available cationic liposomes Cellfectin, DMRIE-C, LipofectAmine, Lipofectin, LipoTaxi, TransFast and the lipid-based reagent FuGENE 6. Optimized conditions were then evaluated in an ex vivo model of chondrocyte transplantation. FuGENE 6 transfection produced the maximum levels of transgene expression. Transfection efficiency was cell type specific and affected by DNA concentration, lipid/DNA ratio and the presence of hyaluronidase, a matrix-degrading enzyme. Analysis of X-gal staining demonstrated an efficiency of 41.0% in normal bovine articular chondrocytes, 20.7% in normal human articular chondrocytes and 7.8% in osteoarthritic human chondrocytes. Transfected chondrocytes were found to successfully populate the articular cartilage surface in explant cultures. Transplanted genetically modified chondrocytes adhered to the articular cartilage and continued to produce β-galactosidase for 2 weeks. This evaluation and optimization of lipid-based gene transfer into articular chondrocytes may serve as a useful tool in studies of genes involved in articular cartilage damage and repair and as a potential delivery method for therapeutic genes.


Knee Surgery, Sports Traumatology, Arthroscopy | 2012

Biomechanical considerations in the pathogenesis of osteoarthritis of the knee

Andras Heijink; Andreas H. Gomoll; Henning Madry; Matej Drobnič; Giuseppe Filardo; João Espregueira-Mendes; C. Niek van Dijk

AbstractOsteoarthritis is the most common joint disease and a major cause of disability. The knee is the large joint most affected. While chronological age is the single most important risk factor of osteoarthritis, the pathogenesis of knee osteoarthritis in the young patient is predominantly related to an unfavorable biomechanical environment at the joint. This results in mechanical demand that exceeds the ability of a joint to repair and maintain itself, predisposing the articular cartilage to premature degeneration. This review examines the available basic science, preclinical and clinical evidence regarding several such unfavorable biomechanical conditions about the knee: malalignment, loss of meniscal tissue, cartilage defects and joint instability or laxity. Level of evidence IV.


Knee Surgery, Sports Traumatology, Arthroscopy | 2012

Biological aspects of early osteoarthritis

Henning Madry; Frank P. Luyten; Andrea Facchini

PurposeEarly OA primarily affects articular cartilage and involves the entire joint, including the subchondral bone, synovial membrane, menisci and periarticular structures. The aim of this review is to highlight the molecular basis and histopathological features of early OA.MethodsSelective review of literature.ResultsRisk factors for developing early OA include, but are not limited to, a genetic predisposition, mechanical factors such as axial malalignment, and aging. In early OA, the articular cartilage surface is progressively becoming discontinuous, showing fibrillation and vertical fissures that extend not deeper than into the mid-zone of the articular cartilage, reflective of OARSI grades 1.0–3.0. Early changes in the subchondral bone comprise a progressive increase in subchondral plate and subarticular spongiosa thickness. Early OA affects not only the articular cartilage and the subchondral bone but also other structures of the joint, such as the menisci, the synovial membrane, the joint capsule, ligaments, muscles and the infrapatellar fat pad. Genetic markers or marker combinations may become useful in the future to identify early OA and patients at risk.ConclusionThe high socioeconomic impact of OA suggests that a better insight into the mechanisms of early OA may be a key to develop more targeted reconstructive therapies at this first stage of the disease.Level of evidenceSystematic review, Level II.


Human Gene Therapy | 2003

Recombinant Adeno-Associated Virus Vectors Efficiently and Persistently Transduce Chondrocytes in Normal and Osteoarthritic Human Articular Cartilage

Henning Madry; Magali Cucchiarini; Ernest F. Terwilliger; Stephen B. Trippel

Successful gene transfer into articular cartilage is a prerequisite for gene therapy of articular joint disorders. In the present study we tested the hypothesis that recombinant adeno-associated virus (rAAV) vectors are capable of effecting gene transfer in isolated articular chondrocytes in vitro, articular cartilage tissue in vitro, and sites of articular damage in vivo. Using an rAAV vector carrying the Escherichia coli beta-galactosidase gene (lacZ) under the control of the cytomegalovirus (CMV) immediate-early promoter/enhancer (rAAV-lacZ), transduction efficiency exceeded 70% for isolated normal human adult articular chondrocytes, and osteoarthritic human articular chondrocytes. These were comparable to the transduction efficiency obtained with neonatal bovine articular chondrocytes. Transduction of explant cultures of articular cartilage resulted in reporter gene expression within the tissue of all three cartilage types to a depth exceeding 450 microm, which remained present until 150 days. When rAAV-lacZ vectors were applied to femoral chondral defects and osteochondral defects in vivo in a rat knee model, reporter gene expression was achieved for at least 10 days after transduction. These data suggest that AAV-based vectors can efficiently transduce and stably express foreign genes in articular chondrocytes, including chondrocytes of normal and osteoarthritic human articular cartilage. The data further suggest that the same rAAV vectors are capable of transducing chondrocytes in situ within their native matrix to a depth sufficient to be of potential clinical significance. Finally, the data demonstrate that these rAAV vectors are capable of effectively delivering recombinant genes to chondral and osteochondral defects in vivo.


Knee Surgery, Sports Traumatology, Arthroscopy | 2013

Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics

Giuseppe Filardo; Henning Madry; Mislav Jelić; Alice Roffi; Magali Cucchiarini; Elizaveta Kon

PurposeThe aim of this systematic review is to examine the available clinical evidence in the literature to support mesenchymal stem cell (MSC) treatment strategies in orthopaedics for cartilage defect regeneration.MethodsThe research was performed on the PubMed database considering the English literature from 2002 and using the following key words: cartilage, cartilage repair, mesenchymal stem cells, MSCs, bone marrow concentrate (BMC), bone marrow-derived mesenchymal stem cells, bone marrow stromal cells, adipose-derived mesenchymal stem cells, and synovial-derived mesenchymal stem cells.ResultsThe systematic research showed an increasing number of published studies on this topic over time and identified 72 preclinical papers and 18 clinical trials. Among the 18 clinical trials identified focusing on cartilage regeneration, none were randomized, five were comparative, six were case series, and seven were case reports; two concerned the use of adipose-derived MSCs, five the use of BMC, and 11 the use of bone marrow-derived MSCs, with preliminary interesting findings ranging from focal chondral defects to articular osteoarthritis degeneration.ConclusionsDespite the growing interest in this biological approach for cartilage regeneration, knowledge on this topic is still preliminary, as shown by the prevalence of preclinical studies and the presence of low-quality clinical studies. Many aspects have to be optimized, and randomized controlled trials are needed to support the potential of this biological treatment for cartilage repair and to evaluate advantages and disadvantages with respect to the available treatments.Level of evidenceIV.


Journal of Gene Medicine | 2005

Gene therapy for cartilage defects

Magali Cucchiarini; Henning Madry

Focal defects of articular cartilage are an unsolved problem in clinical orthopaedics. These lesions do not heal spontaneously and no treatment leads to complete and durable cartilage regeneration. Although the concept of gene therapy for cartilage damage appears elegant and straightforward, current research indicates that an adaptation of gene transfer techniques to the problem of a circumscribed cartilage defect is required in order to successfully implement this approach. In particular, the localised delivery into the defect of therapeutic gene constructs is desirable. Current strategies aim at inducing chondrogenic pathways in the repair tissue that fills such defects. These include the stimulation of chondrocyte proliferation, maturation, and matrix synthesis via direct or cell transplantation‐mediated approaches. Among the most studied candidates, polypeptide growth factors have shown promise to enhance the structural quality of the repair tissue. A better understanding of the basic scientific aspects of cartilage defect repair, together with the identification of additional molecular targets and the development of improved gene‐delivery techniques, may allow a clinical translation of gene therapy for cartilage defects. The first experimental steps provide reason for cautious optimism. Copyright

Collaboration


Dive into the Henning Madry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Zurakowski

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Stephen B. Trippel

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge