Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Magali Cucchiarini is active.

Publication


Featured researches published by Magali Cucchiarini.


Gene Therapy | 2005

Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I)

Henning Madry; Gunter Kaul; Magali Cucchiarini; U Stein; David Zurakowski; Klaus Remberger; Michael D. Menger; Dieter Kohn; Stephen B. Trippel

Traumatic articular cartilage lesions have a limited capacity to heal. We tested the hypothesis that overexpression of a human insulin-like growth factor I (IGF-I) cDNA by transplanted articular chondrocytes enhances the repair of full-thickness (osteochondral) cartilage defects in vivo. Lapine articular chondrocytes were transfected with expression plasmid vectors containing the cDNA for the Escherichia coli lacZ gene or the human IGF-I gene and were encapsulated in alginate. The expression patterns of the transgenes in these implants were monitored in vitro for 36 days. Transfected allogeneic chondrocytes in alginate were transplanted into osteochondral defects in the trochlear groove of rabbits. At three and 14 weeks, the quality of articular cartilage repair was evaluated qualitatively and quantitatively. In vitro, IGF-I secretion by implants constructed from IGF-I-transfected chondrocytes and alginate was 123.2±22.3 ng/107 cells/24 h at day 4 post transfection and remained elevated at day 36, the longest time point evaluated. In vivo, transplantation of IGF-I implants improved articular cartilage repair and accelerated the formation of the subchondral bone at both time points compared to lacZ implants. The data indicate that allogeneic chondrocytes, transfected by a nonviral method and cultured in alginate, are able to secrete biologically relevant amounts of IGF-I over a prolonged period of time in vitro. The data further demonstrate that implantation of these composites into deep articular cartilage defects is sufficient to augment cartilage defect repair in vivo. These results suggest that therapeutic growth factor gene delivery using encapsulated and transplanted genetically modified chondrocytes may be applicable to sites of focal articular cartilage damage.


Human Gene Therapy | 2003

Recombinant Adeno-Associated Virus Vectors Efficiently and Persistently Transduce Chondrocytes in Normal and Osteoarthritic Human Articular Cartilage

Henning Madry; Magali Cucchiarini; Ernest F. Terwilliger; Stephen B. Trippel

Successful gene transfer into articular cartilage is a prerequisite for gene therapy of articular joint disorders. In the present study we tested the hypothesis that recombinant adeno-associated virus (rAAV) vectors are capable of effecting gene transfer in isolated articular chondrocytes in vitro, articular cartilage tissue in vitro, and sites of articular damage in vivo. Using an rAAV vector carrying the Escherichia coli beta-galactosidase gene (lacZ) under the control of the cytomegalovirus (CMV) immediate-early promoter/enhancer (rAAV-lacZ), transduction efficiency exceeded 70% for isolated normal human adult articular chondrocytes, and osteoarthritic human articular chondrocytes. These were comparable to the transduction efficiency obtained with neonatal bovine articular chondrocytes. Transduction of explant cultures of articular cartilage resulted in reporter gene expression within the tissue of all three cartilage types to a depth exceeding 450 microm, which remained present until 150 days. When rAAV-lacZ vectors were applied to femoral chondral defects and osteochondral defects in vivo in a rat knee model, reporter gene expression was achieved for at least 10 days after transduction. These data suggest that AAV-based vectors can efficiently transduce and stably express foreign genes in articular chondrocytes, including chondrocytes of normal and osteoarthritic human articular cartilage. The data further suggest that the same rAAV vectors are capable of transducing chondrocytes in situ within their native matrix to a depth sufficient to be of potential clinical significance. Finally, the data demonstrate that these rAAV vectors are capable of effectively delivering recombinant genes to chondral and osteochondral defects in vivo.


Knee Surgery, Sports Traumatology, Arthroscopy | 2013

Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics

Giuseppe Filardo; Henning Madry; Mislav Jelić; Alice Roffi; Magali Cucchiarini; Elizaveta Kon

PurposeThe aim of this systematic review is to examine the available clinical evidence in the literature to support mesenchymal stem cell (MSC) treatment strategies in orthopaedics for cartilage defect regeneration.MethodsThe research was performed on the PubMed database considering the English literature from 2002 and using the following key words: cartilage, cartilage repair, mesenchymal stem cells, MSCs, bone marrow concentrate (BMC), bone marrow-derived mesenchymal stem cells, bone marrow stromal cells, adipose-derived mesenchymal stem cells, and synovial-derived mesenchymal stem cells.ResultsThe systematic research showed an increasing number of published studies on this topic over time and identified 72 preclinical papers and 18 clinical trials. Among the 18 clinical trials identified focusing on cartilage regeneration, none were randomized, five were comparative, six were case series, and seven were case reports; two concerned the use of adipose-derived MSCs, five the use of BMC, and 11 the use of bone marrow-derived MSCs, with preliminary interesting findings ranging from focal chondral defects to articular osteoarthritis degeneration.ConclusionsDespite the growing interest in this biological approach for cartilage regeneration, knowledge on this topic is still preliminary, as shown by the prevalence of preclinical studies and the presence of low-quality clinical studies. Many aspects have to be optimized, and randomized controlled trials are needed to support the potential of this biological treatment for cartilage repair and to evaluate advantages and disadvantages with respect to the available treatments.Level of evidenceIV.


Journal of Gene Medicine | 2005

Gene therapy for cartilage defects

Magali Cucchiarini; Henning Madry

Focal defects of articular cartilage are an unsolved problem in clinical orthopaedics. These lesions do not heal spontaneously and no treatment leads to complete and durable cartilage regeneration. Although the concept of gene therapy for cartilage damage appears elegant and straightforward, current research indicates that an adaptation of gene transfer techniques to the problem of a circumscribed cartilage defect is required in order to successfully implement this approach. In particular, the localised delivery into the defect of therapeutic gene constructs is desirable. Current strategies aim at inducing chondrogenic pathways in the repair tissue that fills such defects. These include the stimulation of chondrocyte proliferation, maturation, and matrix synthesis via direct or cell transplantation‐mediated approaches. Among the most studied candidates, polypeptide growth factors have shown promise to enhance the structural quality of the repair tissue. A better understanding of the basic scientific aspects of cartilage defect repair, together with the identification of additional molecular targets and the development of improved gene‐delivery techniques, may allow a clinical translation of gene therapy for cartilage defects. The first experimental steps provide reason for cautious optimism. Copyright


Journal of Gene Medicine | 2006

Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo†

Gunter Kaul; Magali Cucchiarini; David Arntzen; David Zurakowski; Michael D. Menger; Dieter Kohn; Stephen B. Trippel; Henning Madry

Defects of articular cartilage are an unsolved problem in orthopaedics. In the present study, we tested the hypothesis that gene transfer of human fibroblast growth factor 2 (FGF‐2) via transplantation of encapsulated genetically modified articular chondrocytes stimulates chondrogenesis in cartilage defects in vivo.


Journal of Gene Medicine | 2003

Sustained transgene expression in cartilage defects in vivo after transplantation of articular chondrocytes modified by lipid-mediated gene transfer in a gel suspension delivery system†

Henning Madry; Magali Cucchiarini; Ute Stein; Klaus Remberger; Michael D. Menger; Dieter Kohn; Stephen B. Trippel

Genetically modified chondrocytes may be able to modulate articular cartilage repair. To date, transplantation of modified chondrocytes into cartilage defects has been restricted to viral vectors. We tested the hypothesis that a recombinant gene can be delivered to sites of cartilage damage in vivo using chondrocytes transfected by a lipid‐mediated gene transfer method.


American Journal of Sports Medicine | 2012

Effect of Subchondral Drilling on the Microarchitecture of Subchondral Bone Analysis in a Large Animal Model at 6 Months

Patrick Orth; Lars Goebel; Mei Fang Ong; Stefan Gräber; Dieter Kohn; Magali Cucchiarini; Anita Ignatius; Dietrich Pape; Henning Madry

Background: Marrow stimulation techniques such as subchondral drilling are clinically important treatment options for symptomatic small cartilage defects. Little is known about whether they induce deleterious changes in the subchondral bone. Hypothesis: Subchondral drilling induces substantial alterations of the microarchitecture of the subchondral bone that persist for a clinically relevant postoperative period in a preclinical large animal model. Study Design: Controlled laboratory study. Methods: Standardized full-thickness chondral defects in the medial femoral condyles of 19 sheep were treated by subchondral drilling. Six months postoperatively, the formation of cysts and intralesional osteophytes was evaluated. A standardized methodology was developed to segment the ovine subchondral unit into reproducible volumes of interest (VOIs). Indices of bone structure were determined by micro–computed tomography (micro-CT). Results: Analysis of the microarchitecture revealed the absence of zonal stratification in the ovine subarticular spongiosa, permitting an unimpeded and simultaneous analysis of the entire subchondral trabecular network. Subchondral drilling led to the formation of subchondral bone cysts (63%) and intralesional osteophytes (26%). Compared with the adjacent unaffected subchondral bone, drilling induced significant alterations in nearly all parameters for the microarchitecture of the subchondral bone plate and the subarticular spongiosa, most importantly in bone volume, bone surface/volume ratio, trabecular thickness, separation, pattern factor, and bone mineral density (BMD) (all P ≤ .01). Conclusion: The data show that the ovine subchondral bone can be reliably evaluated using micro-CT with standardized VOIs. We report that subchondral drilling deteriorates the microarchitecture both of the subchondral bone plate and subarticular spongiosa and decreases BMD. These results suggest that the entire osteochondral unit is altered after drilling for an extended postoperative period. Clinical Relevance: The subchondral bone remains fragile after subchondral drilling for longer durations than previously expected. Further evaluations of structural subchondral bone parameters of patients undergoing marrow stimulation are warranted.


Stem Cell Research & Therapy | 2012

SOX9 gene transfer via safe, stable, replication-defective recombinant adeno-associated virus vectors as a novel, powerful tool to enhance the chondrogenic potential of human mesenchymal stem cells

Jagadeesh K. Venkatesan; Myriam Ekici; Henning Madry; Gertrud Schmitt; Dieter Kohn; Magali Cucchiarini

IntroductionTransplantation of genetically modified human bone marrow-derived mesenchymal stem cells (hMSCs) with an accurate potential for chondrogenic differentiation may be a powerful means to enhance the healing of articular cartilage lesions in patients. Here, we evaluated the benefits of delivering SOX9 (a key regulator of chondrocyte differentiation and cartilage formation) via safe, maintained, replication-defective recombinant adeno-associated virus (rAAV) vector on the capability of hMSCs to commit to an adequate chondrocyte phenotype compared with other mesenchymal lineages.MethodsThe rAAV-FLAG-hSOX9 vector was provided to both undifferentiated and lineage-induced MSCs freshly isolated from patients to determine the effects of the candidate construct on the viability, biosynthetic activities, and ability of the cells to enter chondrogenic, osteogenic, and adipogenic differentiation programs compared with control treatments (rAAV-lacZ or absence of vector administration).ResultsMarked, prolonged expression of the transcription factor was noted in undifferentiated and chondrogenically differentiated cells transduced with rAAV-FLAG-hSOX9, leading to increased synthesis of major extracellular matrix components compared with control treatments, but without effect on proliferative activities. Chondrogenic differentiation (SOX9, type II collagen, proteoglycan expression) was successfully achieved in all types of cells but strongly enhanced when the SOX9 vector was provided. Remarkably, rAAV-FLAG-hSOX9 delivery reduced the levels of markers of hypertrophy, terminal and osteogenic/adipogenic differentiation in hMSCs (type I and type X collagen, alkaline phosphatise (ALP), matrix metalloproteinase 13 (MMP13), and osteopontin (OP) with diminished expression of the osteoblast-related transcription factor runt-related transcription factor 2 (RUNX2); lipoprotein lipase (LPL), peroxisome proliferator-activated receptor gamma 2 (PPARG2)), as well as their ability to undergo proper osteo-/adipogenic differentiation. These effects were accompanied with decreased levels of β-catenin (a mediator of the Wnt signaling pathway for osteoblast lineage differentiation) and enhanced parathyroid hormone-related protein (PTHrP) expression (an inhibitor of hypertrophic maturation, calcification, and bone formation) via SOX9 treatment.ConclusionsThis study shows the potential benefits of rAAV-mediated SOX9 gene transfer to propagate hMSCs with an advantageous chondrocyte differentiation potential for future, indirect therapeutic approaches that aim at restoring articular cartilage defects in the human population.


Stem Cells and Cloning: Advances and Applications | 2014

Current perspectives in stem cell research for knee cartilage repair

Patrick Orth; Ana Rey-Rico; Jagadeesh K. Venkatesan; Henning Madry; Magali Cucchiarini

Protocols based on the delivery of stem cells are currently applied in patients, showing encouraging results for the treatment of articular cartilage lesions (focal defects, osteoarthritis). Yet, restoration of a fully functional cartilage surface (native structural organization and mechanical functions) especially in the knee joint has not been reported to date, showing the need for improved designs of clinical trials. Various sources of progenitor cells are now available, originating from adult tissues but also from embryonic or reprogrammed tissues, most of which have already been evaluated for their chondrogenic potential in culture and for their reparative properties in vivo upon implantation in relevant animal models of cartilage lesions. Nevertheless, particular attention will be needed regarding their safe clinical use and their potential to form a cartilaginous repair tissue of proper quality and functionality in the patient. Possible improvements may reside in the use of biological supplements in accordance with regulations, while some challenges remain in establishing standardized, effective procedures in the clinics.


American Journal of Sports Medicine | 2014

Small Subchondral Drill Holes Improve Marrow Stimulation of Articular Cartilage Defects

Mona Eldracher; Patrick Orth; Magali Cucchiarini; Dietrich Pape; Henning Madry

Background: Subchondral drilling is an established marrow stimulation technique. Hypothesis: Osteochondral repair is improved when the subchondral bone is perforated with small drill holes, reflecting the physiological subchondral trabecular distance. Study Design: Controlled laboratory study. Methods: A rectangular full-thickness chondral defect was created in the trochlea of adult sheep (n = 13) and treated with 6 subchondral drillings of either 1.0 mm (reflective of the trabecular distance) or 1.8 mm in diameter. Osteochondral repair was assessed after 6 months in vivo by macroscopic, histological, and immunohistochemical analyses and by micro–computed tomography. Results: The application of 1.0-mm subchondral drill holes led to significantly improved histological matrix staining, cellular morphological characteristics, subchondral bone reconstitution, and average total histological score as well as significantly higher immunoreactivity to type II collagen and reduced immunoreactivity to type I collagen in the repair tissue compared with 1.8-mm drill holes. Analysis of osteoarthritic changes in the cartilage adjacent to the defects revealed no significant differences between treatment groups. Restoration of the microstructure of the subchondral bone plate below the chondral defects was significantly improved after 1.0-mm compared to 1.8-mm drilling, as shown by higher bone volume and reduced thickening of the subchondral bone plate. Likewise, the microarchitecture of the drilled subarticular spongiosa was better restored after 1.0-mm drilling, indicated by significantly higher bone volume and more and thinner trabeculae. Moreover, the bone mineral density of the subchondral bone in 1.0-mm drill holes was similar to the adjacent subchondral bone, whereas it was significantly reduced in 1.8-mm drill holes. No significant correlations existed between cartilage and subchondral bone repair. Conclusion: Small subchondral drill holes that reflect the physiological trabecular distance improve osteochondral repair in a translational model more effectively than larger drill holes. Clinical Relevance: These results have important implications for the use of subchondral drilling for marrow stimulation, as they support the use of small-diameter bone-cutting devices.

Collaboration


Dive into the Magali Cucchiarini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Zurakowski

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge